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V Abstract

When using a thin'film gage to measure surface heat flux, one typically re-

duces the data for surface temperature to surface heat flux using a series solution for

one-dimensional heat transfer in an initially isothermal, semi-infinite solid. How-

ever, the gage may not behave as an initially isothermal, semi-infinite solid due

to multidimensional heat transfer and electrical preheating of the gage when the

instrumentation is turned on.

To evaluate the accuracy of the series solution for use with thin-film gages,

the heat transfer in a gage was numerically simulated using a two-dimensional,

finite-difference model. The actual geometry of the probe was simplified to reduce

the heat transfer to two dimensions. The simulation produced surface temperatures

which were used in the series solution to find estimates of surface heat flux. The

* heat fluxes from the simulation and the series solution were then compared to

evaluate the accuracy of the series solution.

The analysis provides good insight into the causes of inaccuracies when using

the series solution. It also provides some quantitative results which may be helpful

for estimating errors in actual laboratory use. .' .

0
xvii



A NUMERICAL INVESTIGATION OF THIN-FILM

HEAT TRANSFER GAGES

I. Introduction

1.1 Background and Motivation

A common experimental technique for measuring surface heat flux in the

laboratory employs a thin-film gage. A thin-film gage is essentially a small quartz

cylinder which has a thin, narrow strip of platinum-the thin-film sensor-plated

on its front face. Two small wires connected to opposite ends of the thin-film

sensor run along the side of the quartz cylinder to connect the sensor to recording

instrumentation. Figure 1 is a diagram of a thin-film gage.

The thin-film gage does not directly measure surface heat flux. Instead,

it measures the change in temperature of the surface of the quartz cylinder at

the location of the thin-film sensor as a fuction of time. Because the platinum

film is thin and has a relatively high thermal conductivity, the temperature of

the thin-film sensor should be the same as the temperature of the quartz cylinder

directly beneath it. The resistance of the thin-film sensor is a known function

of temperature. Each gage is calibrated to determine the change in resistance

as a function of change in temperature above some reference temperature [5:p.9].

As the surface temperature of the cylinder changes in response to a disturbance,

the electrical resistance of the thin-film sensor will change. Then, if the gage

is connected in one leg of a properly balanced Wheatstone bridge, the output

voltage of the Wheatstone bridge will be proportional to the change in resistance

of the thin-film sensor. Thus, the output voltage of the Wheatstone bridge circuit

O1



Thin-film sensor

Figure 1. Diagram of a Thin-Film Gage
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indirectly measures the change in surface temperature of the area of the quartz

cylinder directly beneath the thin-film sensor.

Balancing the Wheatstone bridge requires consideration of the electrical heat-

ing in the thin-fim sensor. When the input voltage is applied to the bridge, a small

current will flow through each leg of the bridge circuit including the thin-film sen-

sor. This small current will cause some electrical heating in the thin-film sensor

changing the resistance of the sensor and unbalancing the bridge. Therefore, the

circuit must be turned on and allowed to warm up until the transients settle down

before the bridge can be balanced.

To measure the surface heat flux at the front surface of a test specimen, a

thin-film gage is embedded in the specimen. The gage is held in place with a filler

material which provides a sealed fit. The front surface of the gage must be flush

with the front surface of the test specimen.

To get results for surface heat flux using the thin-film gage, one must convert

the data for change in surface temperature as a function of time into values for

surface heat flux as a function of time. In practice, the data is reduced using a

series solution which assumes heat transfer in an initially isothermal, semi-infinite

solid. In many ways, however, the gage does not behave as an initially isothermal,

semi-Infinite solid during the time when surface temperature data is being collected.

First of all, the electrical heating in the thin-film sensor that occurs while the bridge

is being balanced produces a non-uniform, initial temperature distribution in the

quartz cylinder. Secondly, the electrical heating at any time generaLes non-uniform

heat flow into the quartz cylinder which induces a three-dimensional temperature

profile and heat flow pattern. Thirdly, heat flows radially in the presence of the

disturbance because the gage is not thermally isolated from its surroundings and

the thermal properties of the surrounding materials are not necessarily identical

to those of the quartz cylinder. For the results for external surface heat flux to

be accurate, the effect of the multidimensional heat transfer on the series solution

3



must be small.

Ideally, one hopes to measure the external surface heat flux that would be

present in the test specimen if the gage were not there. The external surface

heat flux is the heat flux from the disturbance not including the additional heat

flux from the electrical heating in the thin-film sensor. However, it is readily

apparent that at best the apparatus measures an average heat flux into the front

surface of the gage itself in the region of the thin film. Nevertheless, if the average

surface temperature measured at the gage approximates the surface temperature

that would exist at the test specimen alone and the electrical heating and its

effect on the thermal boundary layer is small, then the surface heat flux values

obtained using the instrumented test specimen approximate the external surface

heat flux that would exist at an uninstrumented test specimen. From this point

on, this analysis will not investigate how well the surface heat flux measured at the

gage approximates the external surface heat flux that would be present at the test

specimen without the gage. Instead, the analysis investigates how well the series

solution, which assumes heat transfer in an initially isothermal, semi-infinite solid,

approximates the actual external surface heat flux at the gage.

1.2 Purpose

The purpose of this investigation is to numerically simulate the heat transfer

in a thin-film gage with a finite-difference model. The simulation will produce

surface temperatures which will then be used in the series solution to find estimates

of the external surface heat flux. The heat fluxes from the simulation and the series

solution will then be compared to evaluate the accuracy of the series solution.

1.3 Approach

Although the actual heat transfer in a thin-film gage is fully three-dimen-

sional, the analysis uses a simplified model which limits the heat transfer to two

4



dimensions. The heat transfer is limited to two dimensions by modeling the region

of electrical heat generation as a disk centered on the front surface of the quartz

cylinder rather than the actual thin strip. The two dimensions in the heat transfer

problem are now the radial dimension and the axial dimension into the quartz

cylinder from the front surface. Figure 2 illustrates the simplified, two-dimensional

geometry.

The series solution used to reduce the changes in surface temperature to

values for surface heat flux is based on the assumption that the quartz cylinder

behaves as an initially isothermal, semi-infinite solid when the temperature data is

being collected. A number of variables influence the extent to which the cylinder

departs from a semi-infinite solid. These variables include the following:

* Geometry parameters such as

- the rati. of the length of the quartz cylinder to its radius.

- the area covered by the thin-film sensor compared to the total surface

area of the front surface of the quartz cylinder. (In the two-dimensional

model, the ratio of the radius of the heated disk to the radius of the

cylinder describes this variable.)

e The magnitude of the thermal disturbance.

* The magnitude of the electrical heating in the thin-film sensor.

9 The actual or effective thermal properties of the surrounding materials.

For the cylinder to behave as an initially isothermal, semi-infinte solid, the

temperature distribution in the cylinder must be uniform at the start of test time,

the heat transfer in the cylinder must be one-dimensional, and the cylinder must

be longer than the distance into the cylinder to which the effects of the thermal

disturbance at the front surface propagate. None of these assumptions may be

* correct in an actual laboratory experiment.

5
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The first assumption, that the initial temperature distribution is uniform, is

never exactly correct because the electrical heat generation in the thin-film during

the time when the bridge is being balanced establishes a non-uniform temperature

distribution. The magnitude of the non-uniform, initial temperature distribution

depends upon the magnitude of the electrical heat generation, the external condi-

tions and the amount of time allowed for the heat generation before the start of

test time.

The second assumption, that heat transfer is one-dimensional, is also never

correct. First of all, the initial temperature distribution established by the heat

generation before the start of the test is multidimensional. Therefore, the heat

transfer in the cylinder departs from one-dimensional from the very start. In

the simplified model, the initial temperature distribution will be two-dimensional.

Secondly, even in the absence of preheating, the localized surface heat generation

and the fact that the cylinder is not ideally isolated from the surrounding materials

will cause the one-dimensional assumption to fail eventually. The localized surface

heat generation will produce three-dimensional heat transfer in general, but the

heat transfer is limited to two dimensions by the simplified geometry of the model.

The third assumption, that the cylinder is long compared to the distance

that the leading edge of the disturbance travels, is only valid for times less than

the time it takes the leading edge of the thermal disturbance to travel the length

of the quartz cylinder. A rule of thumb for the distance traveled by the leading

edge of a thermal disturbance into a solid is [l:pp.60-61]

1 ; 4 -t (1)

where I is the distance to which the leading edge of the disturbance has traveled,

a is the thermal diffusivity of the solid and t is the time after exposure to the

disturbance. Using this rle of thumb, one would expect the assumption that the

7



cylinder is long to be valid only for test times less than

L 2 ( 2 )

1 6a

where L is the axial length of the cylinder.

The extent to which the cylinder departs from a semi-infite solid is hard to

estimate. It is even more difficult to estimate the error in the values for exter-

nal surface heat flux found using the series solution with the surface temperature

changes from the cylinder. Because it is difficult to analytically estimate the mul-

tidimensional heat transfer in the cylinder and its effect on the results for external

surface heat flux, this analysis estimates the effects through simulation. The sim-

plified, two-dimensional heat transfer problem is simulated using a finite-difference

model on a digital computer. The surface temperatures from the simulation are

used to find the series solution estimate for surface heat flux which is then com-

pared to the external surface heat flux of the simulation. The finite-difference

model allows the variables to be changed arbitrarily so that one can investigate

the effect of each variable individually.

In investigating the effect of heat transfer across the outer-radial boundary

of the quartz cylinder, one can first bracket the results by looking at three limiting

cases. In the first limiting case, one can model the cylinder as fully insulated at

the outer-radial boundary so that no heat flows across the boundary. This limiting

case is equivalent to surrounding the quartz cylinder by a material whose thermal

conductivity is zero. In the second limiting case, one can surround the cylinder with

a material whose thermal conductivity is infinite. The second material is assumed

to be in thermal contact with a heat sink maintained at the initial temperature

of the gage. In this case, the heat flux radially out of the cylinder is a theoretical

maximum. In the third limiting case, one can again surround the cylinder with

a material whose thermal conductivity is infinite. However, for this case, the

temperature of the surrounding material is assumed to be that of the external

disturbance. In this case, the heat flux radially into the cylinder is a theoretical

8



maximum. The first two cases bracket all possible effects due to heat flux radially

out of the cylinder. The first and third cases bracket all possible effects due to

heat flux radially into the cylinder.

In addition to bracketing the results, the analysis will consider a couple of

intermediate cases for heat flux across the outer-radial boundary of the cylinder.

In order for heat to flow across the outer-radial boundary of the cylinder, the sur-

rounding material must have a non-zero thermal conductivity, and there also must

be a temperature gradient at the boundary. The value of the thermal diffusivity

in the surrounding material for the most part determines the direction of the heat

flux established across the outer-radial boundary of the cylinder. Equation 1 shows

that a thermal disturbance will propagate faster in a material with a larger thermal

diffusivity. In other words, a material with a larger thermal diffusivity will heat

up faster. Thus, if the thermal diffusivity of the surrounding material is smaller

than the thermal diffusivity of the quartz cylinder, heat will flow radially out of the

cylinder. On the other hand, if the thermal diffusivity of the surrounding material

is greater than the thermal diffusivity of the quartz cylinder, heat may flow into

the cylinder. It is important to note, however, that the electrical heat generation

will always tend to establish a temperature gradient for heat to flow radially out-

ward. For heat to flow into the cylinder, this temperature gradient must first be

overcome.

Another simplification in the two-dimensional model involves the way in

which the intermediate cases for heat flux across the outer-radial boundary of

the cylinder are modeled. As mentioned in the first section, the gage is embedded

in the test specimen using a filler material. Thus, the true heat transfer problem

involves three materials: the quartz cylinder, the filler material, and the test spec-

imen. However, the surrounding materials affect the results for external surface

heat flux only to the extent that they induce heat flux into or out of the cylinder.

The model for the intermediate cases for heat flux across the outer-radial bound-

0
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ary of the cylinder uses only two materials: the quartz cylinder and a surrounding

material. Using two materials is equivalent to modeling the effective tendency of

the surrounding materials to induce heat flux across the outer-radial boundary of

the cylinder.

0

0
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II. The Finite-Difference Model

Before discussing the finite-difference model, it is instructive to first look at

the differential equations for the two-dimensional model. A good understanding

of the differential equations will help in developing the finite-difference modcl and

in understanding the approximations caused by the discrecization. Also, non-

dimensionalizing the differential equations will yield the important non-dimensional

parameters in the two-dimensional model.

2.1 The Differential Equations

Incropera and Dewitt derive the governing equations for heat transfer in

a solid using an energy balance on the appropriate differential control volume

[4:pp.4 3- 5 3]. For a homogeneous, isotropic solid-one in which properties are

constant with position and uniform in all directions-the governing equation for

temperature in two-dimensional, cylindrical coordinates is

1 0 OT\ a2 T 1OTro 5r Fr + (3)

where r is the radial dimension, z is the axial dimension and thermal diffusivity,

a, is the ratio of thermal conductivity to thermal capacitance, a = k/pcP . A

general solution of Equatin 3 will give the temperature distribution in the solid

as a function of the two spacial coordinates, z and r, and time t. The solution of

Equation 3 is governed by the initial condition on time and the boundary conditions

for each of the two spacial coordinates.

The initial condition for the two-dimensional model before preheating is sim-

ply

T(r, z) = T for t < 0 (4)

The boundary conditions for the two-dimensional model require further explana-

tion.

11



2.1.1 Front Surface Boundary Condition The front surface boundary con-

dition must include consideration of the electrical heat generation in the thin-film

sensor. As previously mentioned, the two-dimensional model models the sensor

as a disk centered on the front surface of the cylinder. Using three assumptions,

the thin-film senso can be modeled simply as a region of surface heat generation.

First, because the sensor is an extremely thin film of platinum, the total thermal

capacity of the sensor is small. Secondly, the thermal contact between the plat-

inum film and the quartz cylinder is assumed to be good so that the temperature

of the lower side of the platinum film is the same as the surface temperature of the

quartz below it. Lastly, the thermal conductivity of platinum is large. Because the

sensor is very thin and has a large thermal conductivity, the temperature through

the sensor essentially will be constant and equal to the temperature of the quartz

below it. Because the thermal capacity of the sensor is small, its energy storage is

negligible. Figure 3 illustrates an energy balance across the sensor using the above

assumptions. Performing the energy balance yields

q3 = hFRONT(TfFRONT - TS) + q9  (5)

where q, is the heat flux into the cylinder, h FRoNT(TFRoNT - TI) is the heat flux

into the disk from the fluid and q. is the electrical heat generation per surface area

of the disk. Then, the boundary condition for the front surface of the cylinder is

I hFRoNT(TIFRoNT-T 8)+q 9 for 0 < r < RAx (6)
Z=o hFRONT(TFRONr - TS) for RDSK < r < RMAX

2.1.2 Back Surface Boundary Condition The boundary condition at the

back surface is similar to the boundary condition at the front surface without the

complication of the thin-film sensor. Us~ag the sign convention that positive heat

flux points in the positive z direction, positive heat flux at the back surface is heat

flux out of the cylinder instead of into the cylinder:

ACOT) =-h K .(TBACK -T 6) (7)0 q=-kz h=L

12

. .... **ll, mlnili l i i ia a DR ma i l n l



hFRONT, TfFRONT

iin =hFRONT(TfFRONT - Ts)

egen qg
r ---- ------------- ' estre =0

Ts

iout qS

Figure 3. Energy Balance Across the Thin-Film Sensor

13



where T6 is the temperature on the back surface of the cylinder.

2.1.3 Inner-Radial Boundary Condition For the two-dimensional model,

heat flux in the radial direction anywhere in the cylinder is the same regardless of

the angular position in the cylinder. This radial symmetry can be satisfied only if

the heat flux in the radial direction at the centerline is zero. Then, the inner-radial

boundary condition for the two-dimensional model is

q= -k - = 0 (8)
ar=

2.1.4 Outer-Radial Boundary Condition A general statement for the bound-

ary condition at the outer radius of the cylinder is similar to the general statement

for the boundary condition at the front and back surfaces. The heat flux crossing

the outer-radial boundary must be equal to the heat flux in the radial direction on

either side of the boundary. In this case, however, both sides of the boundary are

solids, so the boundary condition uses Fourier's law for heat conduction on both

sides:

q, = -k (9)
CYL CYL

where k' is the thermal conductivity of the surrounding material. An important

assumption in using this boundary condition is that the thermal contact between

the quartz cylinder and the surrounding material is good.

As described in Section 1.3, it is worthwhile to investigate three limiting cases

for the boundary condition at the outer radius of the cylinder. Each of the limiting

cases can be modeled without actually including the surrounding material in the

model.

The first limiting case is the case for no heat flux across the outer-radial

boundary of the cylinder. The boundary condition for the fully-insulated or adia-

batic case is
T" = 0 (10)

& r Rc YL
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O The second limiting case is the case for theoretically maximum heat flux out

across the outer-radial boundary of the cylinder. This limiting case is equivalent to

assuming that the thermal conductivity of the surrounding material is infinite and

that the surrounding material is in thermal contact with a heat sink maintained

at the initial temperature of the gage. Then, the temperature in the surrounding

material is always the initial temperature. Thus, the outer-radial boundary con-

dition on the cylinder for the limiting case of maximum heat flux out is simply a

condition of constant temperature:

T(r = RL,z)=Ti (11)

The third limiting case is the limiting case for theoretically maximum heat

flux in across the outer-radial boundary. This case is equivalent to assuming that

the thermal conductivity of the surrounding material is infinite and that the sur-

rounding material is maintained at the temperature of the external disturbance.

O The outer-radial boundary condition on the cylinder for the limiting case of max-

imum heat flux in is also a condition of constant temperature:

T(r = RCYL,Z) = Tf (12)

When including the surrounding material in the model, the differential equa-

tions for heat transfer in the surrounding material are identical to those for heat

transfer in the cylinder except that the properties for the surrounding material are

used in place of the properties for quartz. The outer-radial boundary for the sys-

tem is now the outer-radial boundary of the surrounding material, and one of the

three limiting cases must be used for the outer-radial boundary condition on the

system. Equation 9 then serves as a compatability equation at the discontinuity

between the two materials.

0
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2.2 Non-Dimensional Parameters

When non-dimensionalizing the differential equations, it is first necessary to

specify the non-dimensional form for the variables. Then, the form of the equa-

tions will reveal the relevant non-dimensional parameters of the problem. In this

problem, it is helpful to separate the total heat transfer problem into two sepa-

rate problems which use different non-dimensional forms for the variables and have

some different non-dimensional parameters.

The first of the two problems is the preheating problem. The preheating

problem models the period of time during which the instrumentation circuitry is

turned on and the bridge is being balanced. The test specimen is not exposed to

the external disturbance during the preheating problem. Instead, the system is

disturbed by the electrical heat generation. There are three basic assumptions for

the preheating problem:

O The external fluid temperature on both the front and back surfaces remain

at the initial temperature of the system.

* The values of the convection coefficients on both surfaces are typical free

convection values.

* The surface heat generation is always some non-zero value.

For the preheating problem, the non-dimensional forms for the two dependent

variables T and q are

T-Ti (13)0+= (qglph FRONT)

pq+ - q (14)
pq qg

The second problem is the disturbance problem. The disturbance problem

models the heat transfer after the test specimen is exposed to the external dis-

turbance. The initial temperature distribution for the disturbance problem is the

16



final temperature distribution from the preheating problem. There are three basic

assumptions for the disturbance problem as well:

" The external fluid temperature at the front of the test specimen is different

from the initial temperature of the system.

" The value of the convection coefficient on the front surface of the test speci-

men can be any typical forced convection value.

" Heat generation may or may not be present.

For the disturbance problem, the non-dimensional forms for the two dependent

variables are

dTfFRONT (15)

dq+  =q (16)
dhFRoNT(dTfFRONT - T)

It will be valuable to look at cases where the heat generation is zero. If the

surface heat generation is zero, then the solution to the preheating problem is the

trivial solution; the temperature remains at the initial temperature of the system

until exposed to the external disturbance. Thus, the total heat transfer problem

includes only the disturbance problem when the heat generation is zero.

The preheating problem and the disturbance problem are non-dimensional-

ized differently to account for the different conditions in the two problems. The

preheating problem is non-dimensionalized with q 9 /dhFRo0 , in the denomina-
tor because the temperature difference dTfFRonr-Ti is zero in the preheaing

problem but the heat generation is never zero. The disturbance problem is non-

dimensionalized with the temperature difference dTf FRONT - T in the denominator

instead to allow the surface heat generation to be zero for the disturbance problem.

0
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The non-dimensional forms for the independent variables r, z and t are the

same in both problems. They are

r+ = (17)R CYL

z
L

t+ - at (19)

With these definitions for the non-dimensional variables, the differential equa-

tions can be non-dimensionalized. The non-dimensional, governing equation for

temperature within the solid for either problem is

[L1 2 1 0 ( + 090+  02+ 0(+

rLC 5 ) ±+2 (20)

The initial condition for the preheating problem is

0+(r+ , z+ ) = 0 for t < 0 (21)

Recall that the initial condition for the disturbance problem is the final temperature

distribution from the preheating problem.

It is interesting to note that Equations (20) and (21) remain the same regard-

less of the non-dimensional form for temperature difference, 9 = T - T . One can

multiply Equations (20) and (21) by any non-dimensional constant changing the

form for the non-dimensional variable, 9, and the equations will remain the same.

The non-dimensional equations for the two seperate problems differ only in

some of the boundary conditions. The non-dimensional boundary conditions for

the preheating problem are as follows:

Top surface boundary condition;

- PhFRONTL]-' 1 1).+=o

k + z+=O

S ++1 for 0 < r r+ < [Rn(
18RcL (22)
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Bottom surface boundary condition;

ph [BACKLf
1 00+

1k] (9 z+} (23)I )2+=I

Inner-radial boundary condition;

-- + ) = 0 (24)

Outer-radial boundary conditions;

Boundary between materials -for use when including the surrounding ma-

terial in the model,

a0+ = k(25)+=l
_ [k] cr+1+ (5

or

Fully-ins ulated,
- =0 (26)

Maximum heat flux out,

0+(r + =1, z + ) = 0 (27)

Maximum heat flux in,

+(r+ = 1,z+) = 0 (28)

for the limiting cases.

The non-dimensional boundary conditions for the disturbance problem are

the following:

Top surface boundary condition;

Az +FRONTL] O+ o (29)

1- 9 ( 9/dh FRONT) 1 o < R p [ ,L7=0j + (dTfF'RNT -r)] for0<r+< I RcYL (30)
19 < r + < _0+ for IRcYL] < [Rcir'l



Bottom surface boundary condition;

[dhBAc K L  1 0+ 0+  (31)

Inner-radial boundary condition;

+ 0 = (32)Or+) =

Outer-radial boundary conditions;

Boundary between materials -for use when including the surrounding ma-

terial in the model,

Or9+ k' Or+
] -;]r=- =k 0O-+) r+=,1+ (33)

or

Fully-insulated,
00 =0(34)
-+) +=,

Maximum heat flux out,

0+(r + = 1,z + ) = 0 (35)

Maximum heat flux in

0+(r+ = 1, z+ ) - 1 (36)

for the limiting cases.

The non-dimensional differential equations for the heat transfer in the cylin-

der during the preheating and disturbance problems include the following non-

dimensional parameters which govern the solution:

External fluid conditions and electrical heat generation;

PBiFRONT - Ph FRONTL (37)
k
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i hBACKpBACK L (38)

dBiFRONT = (39)

dBiZBACK A BACK L (40)

- (qg/dh FRONT)
(dTIFRONT - Ti) (41)

= (dTIAC T (42)
(dTFRONT - T)

Geometry ratios;

LRL 
(43)

RDISK

RCYL (44)

Property ratio
k" 

(45)

0 Two additional non-dimensional parameters arise when including the sur-

rounding material in the analysis. The first is a geometry ratio specifying the

extent of the surrounding material:

RMAX (46)

RCL

The second is another property ratio-the ratio of thermal capacitances:

(pcp) (47)

When incorporating the final temperature distribution from the preheating

problem as the initial temperature distribution to the disturbance problem, an-

other non-dimensional parameter can be defined for convenience. Non-dimensional

temperature values from the preheating problem can be converted to the non-

dimensional form used in the disturbance problem by multiplying by the L -neration

ratio, y, and a derived parameter, 0, which is the ratio of the convection coefficient
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at the front surface in the disturbance problem to the convection coefficient at the

front surface in the preheating problem:

dBiFRONT/3= (48)
PBiFRONT

2.3 The Finite-Difference Equations

Without an analytical solution to the differential equations for the two-

dimensional model, it is necessary to approximate the transient solution through

simulation. The most common method for simulating heat transfer is to r'in a

finite-difference model on a digital computer. Various finite-different schemes are

available. This analysis uses an explicit finite-difference scheme derived using the

control-volume approach. The explicit scheme uses second order, central differences

for the spatial derivatives and first order, forward differences for the time deriva-

tives. Incropera and Dewitt present the control-volume approach in developing

finite-difference models for conduction heat transfer problems [4:pp.143-149,213-

220]. The control-volume approach has the advantages of being easy to use and

versatile in application to different and complicated boundary and geometry con-

ditions. The control-volume approach is also a conservative approach which means

that the finite-difference model developed using the control-volume approach will

satisfy the statement of conservation of energy to within the truncation error for

the model. The finite-difference models used for the single-material and the two-

material problems with fully-insulated, outer-radial boundary conditions are given

in Appendices D.1 and D.2, respectively.

2.3.1 Discretizing the Model The first step in developing the finite-differ-

ence model is to discretize the continuous model in both space and time. Figures 4

and 5 illustrate the discretized geometry of the single-material problem and the

two-material problem, respectively. To discretize the geometry, the cylinder and

the surrounding material are subdivided into nodal regions. Associated with each
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nodal region is a reference point or reference level for the region called a node. All

nodal regions are annular rings except for those on the centerline of the cylinder

which are cylinders of radius Ar/2. Interior nodal regions-those not on an exterior

system boundary-are annualar rings of width Ar and depth Az. Nodal regions on

exterior system boundaries are generally assigned half the step size of interior nodal

regions. For nodal regions at any boundary, the node is placed on the boundary.

Placing nodes directly on the boundary rather than one-half spacial step in from

the boundary provides better resolution of the boundary conditions. Because the

heat transfer in the two-dimensional model is axi-symnetric, the reference point

for nodal regions other than those on the centerline of the cylinder can be any

point on an annular ring at the reference radius and depth.

In general, discretizing the geometry means that the finite-difference model

only solves for temperatures at the nodes. The temperature at a node represents

an average temperature for the nodal region. For the purpose of deriving the

finite-difference equations, conditions across the nodal region are often assumed

constant and equal to the conditions associated with the node or the nodal region.

Continuous time is discretized similarly, so the finite-difference model only solves

for temperatures at discrete intervals in time as well.

To identify positions in the nodal geometry mesh, the index value n specifies

the radial position of the node, and the index value m specifies the axial position of

the node. When used as subscripts, the radial index is placed first such as in 0 ,,,m.

(The only exceptions are for values denoting surface conditions using the subscripts

a and b to denote the axial positions on the front and back surfaces, respectively.

Subscripts - and b are placed before the radial index value as in 0,,.) The index

value of zero for n denotes postions on the centerline of the cylinder where the

radial dimension is zero. The index value of zero for n denotes positions on the

front surface where the axial dimension is zero. Then, the radial position of a node

with radial index n is r = nAr . Similarly, the axial position of a node with axial

25
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index m is z = mAz. The index value j specifies the time level in discretized

time. The time index j is usually placed as a superscript. The index value of zero

for j denotes time t = 0 , so the time denoted by index j is t =jAt

2.3.2 Nodal Equations In the explicit scheme, a finite-difference equation

for each node estimates the temperature of the node at the new, unknown time

level in terms of the temperatures of the node itself and surrounding nodes at

the old, known time level. The finite-difference equations are developed using an

energy balance on the individual nodal volumes.

For the purpose of deriving the finite-difference equations, one assumes that

the heat flux at each surface of the nodal volume is directed into the nodal volume.

Of course, the actual direction of the heat flux during the simulation depends

on the temperature profile. This sign convention merely helps in developing the

equations correctly. One also assumes that the heat flux at each surface of the

nodal volume is constant and equal to the heat flux at the reference level. Then,

the energy balance at each nodal volume is

q1Aj + q2A 2 + q3A 3 + q4A 4 = (Pcp)V 0T (49)

The subscripts 1-4 denote the inner-radial, outer-radial, front (smaller axial dimen-

sion) and back (larger axial dimenion) surfaces of the nodal volume, respectively.

The develoment of each nodal, finite-difference equation requires specific in-

formation about the node whose equation is being developed. Nevertheless, the

procedure is basically the same for all nodes. To illustrate the process, the steps are

outlined for an interior node in the cylinder. Figure 6 shows the nodal geometry

for an interior node in the cylinder.

The first step is to specify the dimensions of the nodal region. For an interior

node in the cylinder

A, = 27r(n - 1/2)ArAz (50)
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Figure 6. Nodal Geometry for an Interior Node in the Cylinder
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A2 = 2wr(n + 1/2)ArAz (51)

A3 = 7r [(nAr + Ar/2)2 - (nAr - Ar/2)2] = 7r(2n)Ar 2  (52)

A4 = 7r(2n)Ar 2  (53)

and

V = 7r(2n)Ar 2Az (54)

The next step is to determine a finite-difference expression for the heat flux

at each of the surfaces of the nodal volume. For an interior node, a finite-difference

expression for the heat flux at each surface is determined from Fourier's conduction

law using a central difference to approximate the temperature gradient. Using the

finite-difference expressions for heat flux and a forward difference to approximate

the time derivative, a finite-difference expression for the energy balance at an

interior node in the cylinder is

c [ir(2n)Ar 2AZ] (n,m - n,m _

At

k [27r(n - 1/2)ArAz] ML ,,n - T nm)

Ar

+ k [27r(n + 1/2)ArAz (T4im -Tnm (55)
Ar

+ k [r(2n)Ar2] T+ k [7r(2n)Ar2] (Tn,m+i- Tn,.m)

Az Az

By calculating the spacial derivatives at the old time level, j, and not at

the new time level, j + 1, or some combination of the two, the finite-difference

scheme will be an explicit scheme. The only unknown in each nodal equation is

the temperature of the node at the new time level, j + 1, used in the forward-

difference approximation for the time derivative. Solving for the temperature of

each node at the new time level is straightforward. Grouping temperature terms

for the same node at the same time level toget' er and solving for the temperature

at the new time level gives the dimensional form for the nodal finite-difference

0
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equation for an interior node in the cylinder:

T +1= - /1/2n)_iAt A

.j, M(Ar)2T ,+ a(l +1/2n) (A) 2 T.4+ilm

At -,At _6
F+ - (56)

It is not necessary to derive the finite-difference equation at each node. Nodes

that have similar geometry and the same boundary conditions will have identical

finite-difference equations. The only difference in the equations will be the specific

values of the indexing variables. Also, when including the surrounding material in

the model, one must be careful to use the correct property values for each term

in the energy balance. For the single-material problem, there are nine different

forms for the nodal finite-difference equations corresponding to the nine different

locations labeled (a)-(i) in Figure 4. For the two-material problem, in which

both the cylinder and the surrounding material are included in the finite-difference

nodal mesh, there are fifteen different forms for the nodal finite-difference equations

corresponding to the locations labeled (a)-(o) in Figure 5.

2.3.3 Boundary Conditions An advantage of the control-volume approach

in deriving the finite-difference equations is the ease with which the boundary con-

ditions and material boundaries are incorporated in the finite-difference model.

The continuous forms of the boundary conditions for the two-dimensional model

were introduced in Sections 2.1.1-2.1.4. Recall that the single-material problem

uses one of the three limiting cases for outer-radial boundary condition on the cylin-

der. The two-material problem must also use one of the three limiting cases for

the outer-radial boundary condition on the surrounding material. The boundary

between the materials in the two-material problem will require special considera-

tion.

To incorporate the front surface boundary condition in the finite-difference

model, the nodal energy balance for nodes at the front surface is modified. The
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heat flux into the nodal region across the front surface, q3, is determined from the

front surface boundary condition, Equation (6):

{ hFRONT(TFRONT - T,,) + q, for 0 < n < NDISK(

hFRONT(TFRONT - To) for NDIsK + 1 < n < NMAx

The only approximation in applying the front surface boundary condition to the

finite-difference model is the assumption that the heat flux is constant across the

nodal region and equal to the heat flux evaluated at the node. Assuming that the

heat flux is constant is equivalent to assuming that the temperature on the surface

of the nodal region is constant and equal to the temperature at the node.

The back surface boundary conditon is incorporated similarly. The nodal

energy balance for nodes on the back surface uses the back surface boundary con-

dition of Equation (7) to determine the heat flux into the node across the back

surface:

BA(= hAC,(TBACK - TMMAX) (58)

One of the three limiting cases for the outer-radial boundary condition must

be used for the outer-radial boundary condition of the system. To use the fully-

insulated case, the energy balance for nodes on the outer-radial boundary is mod-

ified by setting the heat flux into the node from a larger radial position equal to

zero:

q2 = 0 (59)

The cases for maximum heat flux out across the boundary and maximum heat flux

in across the boundary are realized by keeping the temperature of the node on the

boundary equal to some constant. The nodes on the outer-radial boundary do not

need a finite-difference equation since the temperature at the next time level does

not change. In the case for maximum heat flux out, the temperature at each node

on the outer-radial boundary remains at the initial temperature:

TNMAx m:= Ti (60)
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In the case for maximum heat flux in across the outer-radial boundary, the temper-

ature at each node on the outer-radial boundary remains at the fluid temperature:

TNmAX,m = T! (61)

2.3.4 The Boundary Between Materials For the two-material problem, in

which the thermal conductivities of the materials are different, the temperature

gradient at the boundary between the materials is discontinuous. Nevertheless,

energy is still conserved. Because the control-volume approach is based on the con-

servation of energy for each nodal volume, the development of the finite-difference

equations for nodes on the boundary between the materials remains essentially the

same. The same assumptions are used with special care to account for the change

in properties. Figure 7 shows the nodal geometry for a node on the boundary

between the materials.

The conductivities to use in the expression for heat fluxes q, and q2 are readily

apparent. Heat flux q, in the cylinder uses the thermal conductivity of the cylinder,

while heat flux q2 in the surrounding material uses the thermal conductivity of the

surrounding material:
(Tj  -T

q = k (NCYL-,m -TcYLm) (62)
Ar(T . - T' .~ m

q2= k' gcY,+l,- TCYLM) (63)/Ar

The heat flux at the front and back surfaces, q3 and q4, is a function of both

thermal conductivities. The axial temperature gradient at each surface is still

assumed constant and equal to the axial temperature gradient evaluated at the

boundary. However, the heat flux at the portion of the surface in the cylinder is

determined using the thermal conductivity of the cylinder, while the heat flux at the

portion of the surface in the surrounding material is determined using the thermal

conductivity of the surrounding material. The heat flow through each portion of

each surface is the product of the heat flux at each portion of each surface times
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4
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Figure 7. Nodal Geometry for a Node on the Boundary Between Materials

32



the area of the portion of the surface. Then, the total heat flow across each surface

is equal to the sum of the heat flows across each portion. Finally, the average heat

flux across each surface is the total heat flow divided by the total surface area.

An equivalent method of calculating the heat flux at each surface is to use

an average value for thermal conductivity, k, which is weighted according to the

fraction of the surface area in each of the two materials:

-k(NCYL - 1/4) + k'(NcYL + 1/4) (64)
2NcYL

Then, the finite-difference expressions for q3 and q4 are

q3 = (TNCYL,MIl -TkCIL,mn) (65)
AZ

q4 = k(TNCYL,,1 - TkcYL,m) (66)
AZ

The total thermal capacity of the nodal volume is equal to the thermal capac-

ity contributed by the surrounding material plus the thermal capacity contributed

by the quartz material. The thermal capacity contributed by the surrounding

material is the thermal capacitance of the surrounding material times the part of

the nodal volume made up by the surrounding material. The thermal capacity

contributed by the quartz material is determined similarly. Again, an equivalent

method of calculating the total thermal capacity is to multiply the total nodal vol-

ume by an average thermal capacitance which this time is weighted by the fraction

of volume in each material:

(V_) = (pC,)(Nc'L - 1/4) + (pC,)'(NCyL + 1/4) (67)

2NcyL

Then, the energy storage term for nodal volumes on the boundary between the

materials is
ior(TvoM A NcYLm) (68)
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2.3.5 Non-Dimensional Nodal Equations The nodal equations are non-di-

mensionalized the same way that the differential equations are non-dimensionalized.

First, the non-dimensional form of the variables is specified. Then, the non-

dimensional form of the equations determines the relevant non-dimensional param-

eters in the problem. As explained in Section 2.2, the total heat transfer problem

is divided into two seperate problems, the preheating problem and the disturbance

problem. The two problems use different non-dimensional forms for the dependent

variables T and q but the same non-dimensional forms for the independent vari-

ables r, z and t. The non-dimensional nodal equations are the same except for the

nodes on both the front and back surfaces (see Section 2.2).

The non-dimensional forms for temperature and heat flux in the preheating

and disturbance problems are given in Equations (13)-(16) in Section 2.2. As

in the dimensional form of the nodal equations, the independent variables in the

non-dimensional nodal equations are expressed as an index value multiplied by a

* non-dimensional step size:

r+ = nAr +  (69)

z+ = mAz +  (70)

t+  ja +  (71)

The non-dimensional step sizes are

Ar 1
Ar +  - - (72)

RCYL NcYL
Az 1

Az +  - - (73)L M,,

nat
At + =- ' (74)

The outer-radial boundary of the cylinder is always at non-dimensional radius of

1.0. Then, for the two-material problem, non-dimensional radius values in the sur-

rounding material are greater than 1.0. Similarly, the back surface of the cylinder

is always at non-dimensional axial dimension of 1.0.
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The non-dimensional, finite-difference model does include the very same

non-dimensional parameters introduced in Section 2.2. Three additional non-

dimensional parameters in the finite-difference model are the non-dimensional step

sizes; Ar, Az and At. One can think of the index variables n, m and j as being

the independent variables in the finite-difference model, while the non-dimensional

step sizes are additional parameters peculiar to the finite-difference model. The

continuous model should be equivalent to the limiting case of the finite-difference

model as the step sizes approach zero. Two other property ratios, k/k and pcp/-P,

appear in the non-dimensional nodal equations for nodes on the boundary between

the two materials. However, these two property ratios are functions of other inde-

pendent, non-dimensional parameters:

T = (1 - 1/4tr + ) + ](1 + 1/4A +)

k2 (+2r

(pc() (1 - 1/4Ar + ) + 2(Pc) (( +7-P P = _C) (76)

The non-dimensional nodal equations for the single-material and two-materi-

al problems using the fully-insulated, outer-radial boundary condition are given in

Appendices A.1 and A.2, respectively. To use the outer-radial boundary conditions

for maximum heat flux out or maximum heat flux in, the nodal equations for nodes

on the outer-radial boundary are omitted, and the temperatures for nodes on the

outer-radial boundary are set to the appropriate constant values. For the limiting

case of maximum heat flux out, the non-dimensional temperature at the outer-

radial boundary is zero. For the limiting case of maximum heat flux in, the non-

dimensional temperature at the outer-radial boundary is zero for the preheating

problem and one for the disturbance problem (see Equations 27, 28, 35 and 36).

2.3.6 Stability Criterion When using an explicit method, the time step can

not be chosen arbitrarily. The time step must be small enough to ensure that the

system is stable. The instability in an explicit method results from evaluating the
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finite-difference expression for net heat flux into the nodal volume at the old time

step rather than at the new time step or a combination of the new and old [4:p.215].

The change in temperature during a time step tends to reduce the temperature

gradients that caused the net heat flux, which then decreases the magnitude of

the net heat flux into the control volume. For example, if heat is flowing into a

control volume at some time level, the temperature in that control volume will

increase. The increase in temperature of the control volume will tend to reduce

the temperature gradients that caused the heat to flow into the control volume,

which in turn decreases the rate at which heat continues to flow into the control

volume.

The explicit method ignores this compensatory effect. Instead, the explicit

method evaluates the net heat flux into the nodal volume at the old time level

and assumes that this net rate of energy flow into the control volume is constant

throughout the next time step. It then predicts the temperature at the node for the

Snew time level using the net rate of energy flow evaluated from the old time level.

As a result, if the time step is too large, the explicit method can predict a change in

temperature which violates the second law of thermodynamics. The overprediction

in each step of the explicit method can also cause the solution to oscillate without

necessarily becoming unstable. Instabilities occur when these oscillations grow so

that eventually the temperatures alternate between increasingly larger positive and

negative values.

Incropera and Dewitt suggest a criterion to use in finding the maximum al-

lowable time step [4:p.215]. The criterion they suggest is easy to use and not only

assures that the system will be stable but also helps to assure that the solution will

not oscillate. For heat transfer with constant boundary conditions, temperatures

at each node should change smoothly in one direction. Temperatures should not

increase in one time step, decrease in the next, and increase in the following. In-

cropera and Dewitt suggest limiting the time step so that the coefficients in front
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of the temperature terms in all the nodal equations (see Appendix A) are positive.

It is easy to see that this criterion assures stability; if this criterion is satified,

there is no mechanism for non-dimensional temperatures to become negative. It

is important to apply the criterion to all nodal equations and not just the inte-

rior nodal equations. If a solution diverges at any node, the whole solution will

eventually diverge. In fact, the nodal equations for nodes on the boundaries in the

two-dimensional model will have more severe stability requirements because their

dimensions are smaller. Although the criterion suggested by Incropera and Dewitt

is a sufficient but not necessary criterion for stability, the time steps determined

using the criterion are often very close to time steps which cause instability in the

two-dimensional model.

For the single-material problem, the nodal equation for the node at the cen-

terline and on the surface with the larger Biot number, usually the front surface,

has the most severe stability requirement (node (a) in Figure 4):

At + < (4 LJN 2 - 2M2A - 2BiAM.,a (77)
LRCtL <Y MAX -B MAX ~MX 1(7

For the two-material problem, the nodal equation with the most severe stability

requirement depends on the values of the property ratios. In any case, the node

with the most severe stability requirement is again a node on the surface with

the larger Biot number, usually the front surface. The node with the governing

requirement may be the node at the centerline, the node at the material boundary

or any of the nodes between the material boundary and the outer-radial boundary

(node (a), node (c) or nodes in region (d) in Figure 5). The stability requirement

for these three nodal equations in their respective order are

t+ < (N 2MAX 2BiMMAX (78)k RCYLJ -Y 2MAX-B M MAX )-

A+< { (c) [R L ] 2 NCYL [NcYL - 1/2) + k'- (NcYL +1/2)]
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MAX I M

and

At 2 YL) ][L 2 k MAX
CPp, YL Y- (pep)' k M

+2 1"")} BiMAXMMAX) (80)

The second two stability requirements can become more severe than the first for

cases in which (pcp)/(pcp)' > 1 or k'/k > 1 or both.

2.3.7 Convergence Criterion for the Preheating Problem The preheating

problem models the time after the instrumentation is turned on during which

the Wheatstone bridge is being balanced. The preheating of the quartz cylinder

continues until the temperature of the thin-film sensor stabilizes enough that the

bridge can be balanced. When simulating the preheating problem, some criterion

must be used to determine when to end the preheating problem and begin the

disturbance problem. The criterion used in the simulation models the decision to

end the preheating problem by quitting when the rate of change in the solution

is less than some tolerance value. Specifically, at each time level the criterion

picks the largest change in non-dimensional temperature at any node, divides the

absolute value of that largest change by the largest non-dimensional temperature

in the system, and then divides this normalized maximum change by the time step

to arrive at a maximum normalized rate of change. The maximum normalized

rate of change is then compared with the tolerance value. Figure 8 illustrates the

decision.

The maximum change is normalized with the largest non-dimensional tem-

perature at that time step to better model the decision process. To an external

observer the system seems to stabilize when the noticeable rate of change is small.

The normalized rate of change measures the noticeable rate of change. For exam-

ple, a non-dimensional temperature change of 0.002 in one time step can represent
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0 a significant rate of change when the maximum non-dimensional temperature value

at that time is 0.04. However, the same non-dimensional temperature change of

0.002 in another time step can represent an insignificant and unnoticeable rate of

change if the maximum non-dimensional temperature value at that time is on the

order of 1.

2.4 The One-Dimensional Series Solution

Thin-film heat transfer gages measure the temperature on the front surface

of the gage at the location of the thin-film sensor. Surface heat flux is derived

from this data using the one-dimensional series solution first proposed by Cook

and Felderman [2:pp.561-56 2 ]. The underlying assumption for the series solution

is that the quartz cylinder behaves as an initially isothermal, semi-infinite solid.

The governing equation for temperature in a semi-infinite solid is [4:p.202]

09 029

*i = a 0- (81)

where x is the distance into the solid. The initial condition and the boundary

condition for large x in an initially isothtcmal, semi-infinite solid are

O(x,t < 0) = 0 (82)

O(x --+ 0,t > 0) = 0 (83)

The series solution is based on the solution for temperature in a semi-infinite solid

with constant surface temperature. The front surface boundary condition on x for

the problem with constant surface temperature is

O(X = 0,t > 0) = 0, (84)

The solution for temperature in the semi-infinite solid with constant surface tem-

perature is [4:p.203]

9(xt) = Ocrfc (s -) (85)
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Using the Duhammel superposition method and this temperature solution,

one can derive a complete expression for the temperature distribution within an

initially isothermal, semi-infinite solid when the surface temperature is some known

function of time. This expression is in the form of an integration over time of the

surface temperature. One can then solve for the surface heat flux at any time using

Fourier's conduction law immediately below the surface, q. = -kLg,) . The

expression for surface heat flux is also in the form of an integration over time of

the surface temperature. The integral expression used by Cook and Felderman,

modified slightly to be in terms of basic properties, is

k fe,(t) A t .t .A
q.(t) = /2 /2 [7/, + 2 6=(t - A)dA] (86)

Cook and Felderman proposed to approximate the exact integral solution for

surface heat flux by approximating the surface temperature function as a piecewise

linear function of time. Then, the integral in Equation 86 can be performed exactly.

The resulting equation for surface heat flux is in the form of a series summation

of surface temperatures at discrete values of time. Rearranged slightly, Cook and

Felderman's series solution for surface heat flux is [5:p.121

2k [ j 08(ti) - 0.(tj.)(q, (tj) - /2,/1 /2t --- : /2 (87)
2 j=1 (tj - tj),I, + (tj - t _,) I

For a solid that does behave like an initially isothermal, semi-infinite solid,

the only approximation results from modeling the actual surface temperature func-

tion as a piecewise linear function of time. Cook and Felderman tested the series

solution for some cases in which surface heat flux into a semi-infinite solid is known

analytically. They show that when exact values for surface temperature are used in

the series, the series solution is well behaved and fairly accurate. Surface heat flux

values tend to be slightly high, but accuracy improves when smaller time intervals

are used.
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2.5 Comparing the Series Solution Estimate with the Simulated Surface Heat Flux

The temperatures from the two-dimensional simulation are used in the se-

ries solution to get the series solution estimate for external surface heat flux. The

objective of this analysis is to evaluate the accuracy of the series solution by com-

paring these series solution estimates to the actual, external surface heat flux from

the simulation.

To use the series solution with temperatures from the two-dimensional model,

the series solution must also be non-dimensionalized. Using the non-dimensional

form for the disturbance problem, the non-dimensional series solution is

+J( 2 J+o0+- +- 

[9+ + J )/] (88)dB Z' R~ONT(7r' t+)1/2 2 J + (J-J)1/2+(J-J+l1)1/ 2.= J ()

When using the gages in the laboratory, one calculates a single value for the

surface temperature from the change in resistance of the thin-film sensor. When

the temperature is not constant over the front surface of the gage, the temperature

determined from the resistance change of the sensor is some average temperature

of the surface of the gage at the thin film.

A good way to model the process of finding a single average temperature is to

average the nodal temperatures in the region covered by the thin-film sensor. The

average should be a weighted average in which the individual nodal temperatures

are weighted by the fraction of the total surface area of the sensor covered by

each of the nodal regions. For the two-dimensional model, a simplified form of the

weighted average is

0 +  1/40+,o + 2 N l nO+ ,  (89)
S,AV (N ,sK + 1/2)2

The average surface temperatures can then be used in the series solution to find

the series solution estimate for external surface heat flux.

The surface heat flux value to which the series solution estimate is compared

is the actual average, external surface heat flux from the finite-difference model
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in the region of the heated disk. From Equation (30), the non-dimensional, ex-

ternal surface heat flux at each node in the region of the heated disk during the

disturbance problem is

+2,, = 1 - (90)

The average, external surface heat flux is found using Equation (89) and replacing

the nodal temperatures with the nodal surface heat fluxes.

An alternate and equivalent method for finding the average, external surface

heat flux from the finite-difference model is to use the average surface temperatures

from Equation (89) directly in Equation (90). Similarly, an alternate and equivalent

method for finding the series solution estimate is to use the temperatures at each

node in the non-dimensional series approximation to find series solution estimates

for heat flux at each node and then to take a weighted average of these series

solution estimates.

The series solution and finite-difference estimates for external surface heat

flux are compared by finding their difference. The difference in the two estimates is

automatically normalized with respect to the maximum theoretical, external sur-

face heat flux by the non-dimensional form used in the disturbance problem. The

external surface heat flux is maximum if the surface temperature is the undisturbed

initial temperature, T:

qS,MAX = dhfF RoNT(dTFRoNT - T,) (91)

This maximum, external surface heat flux is 1.0 in non-dimensional terms. Then,

the difference in the non-dimensional series solution and finite-difference estimates

multiplied by 100.00 is also the percent difference of the two estimates relative the

maximum theoretical, external surface heat flux:

Percent Difference = (q SR - qFD) X 100.00 (92)

The code used in the analysis to compare the series solution and the finite-

difference estimates for external surface heat flux is given in Appendix D.3.
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III. Check Cases

Check cases on the finite-difference model serve the same purpose that cal-

ibration serves in laboratory experiments. Check cases test the model for gross

errors (i.e. typing errors and other debugging problems) and systematic errors

that result from finite-differencing. The check cases will each be simplified prob-

lems for which an analytical solution exists. As a result, they will check individual

aspects of the model separately. The check cases should ultimately show how ac-

curate the model is for its intended use and in what ways or under what conditions

the model may be inaccurate.

The check cases for the finite-difference model are divided into three cate-

gories. The first two are steady-state cases for one-dimensional heat transfer in the

axial direction and then the radial direction. The third catagory includes transient

cases for one-dimensional heat transfer in the axial direction only. The steady-state

cases primarily check the accuracy of the spatial derivatives in each of the two di-

rections. The accuracy to which the solutions converge on the correct steady-state

values should indicate the accuracy of the derivatives. Another check on the ac-

curacy of the derivatives would be to observe the transient temperature profiles

during the steady-state cases to assure that the transient solutions progress logi-

cally toward the steady-state solution. Also, one can check for gross errors simply

by assuring that the heat transfer is indeed one-dimensional at each time step.

The transient cases check the accuracy of the time derivatives in the model

in conjunction with the axial derivatives only. However, if the time derivatives are

accurate for axial heat transfer, then they should also be accurate for radial heat

transfer. The transient cases also check the accuracy of the series solution for sur-

face heat flux when the solid does behave as an initially isothermal, semi-infinite

solid. Although the transient cases could be used to check the accuracy of tran-

sient temperature profiles in the solid, the transient cases were used to check the
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0 accuracy of only transient surface temperatures since the model is primarily used

to produce transient surface temperatures for the analysis. The series solution was

checked using both the analytical values for surface temperature and the surface

temperatures produced by the finite-difference model in order to distinguish be-

tween inaccuracies inherent to the series solution and those caused by the surface

temperatures produced by the finite-difference model.

3.1 One-Dimensional, Steady-State Heat Transfer in the Axial Direction

The one-dimensional, steady-state check cases for heat transfer in the axial

direction are separated into cases using the preheating problem and cases using the

disturbance problem. To obtain one-dimensional heat transfer in the preheating

problem, the heat generation must be uniform over the front surface. Uniform

surface heat generation is obtained by making the heated disk as wide as the

cylinder and by using the single-material problem only. The check cases for the

preheating problem include cases in which the Biot number at the back surface is

either zero or non-zero.

One-dimensional heat transfer can be obtained in the disturbance problem

using either uniform surface heat generation or no surface heat generation. When

surface heat generation is absent, heat transfer will be one-dimensional for both

the single-material problem and the two-material problem with property ratios

of unity. Because the results for the two problems are identical, only the results

for the single-material problem are shown. The check cases for the disturbance

problem include cases in which surface heat generation is either uniform over the

surface of the cylinder or absent and in which the Biot number at the back surface

is either zero or non-zero.

The analytical solutions for one-dimensional, steady-state heat transfer in

the axial direction were determined using thermal networks developed from the

electrical analogy [4 :pp. 6 4 - 6 5]. For one-dimensional, steady-state heat transfer in
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the axial direction, Equation (3) reduces to

a aT) =0(93)

Heat flux is constant because the temperature gradient is constant. When the tem-

perature gradient is constant, both the temperature gradient and the temperature

profile through the solid are completely specified by the temperatures at the front

and back surfaces. Then, for one-dimensional, steady-state heat transfer in the ax-

ial direction, the following system of simultaneous equations completely specifies

the analytical solution:

q, = k(T. -Tb) (94)
L

q, = h FRONT(TFRONT - T) + qge, (95)

qb = hBAc,.(Tb-TfBAcK) (96)

qz = qs = qb (97)

The simultaneous equations governing one-dimensional, steady-state heat

transfer in the axial direction are similar to equations governing current flow in

electrical networks. Therefore, one can apply the mathematics used with electric

circuits to analyze the heat transfer. In the electical analogy, heat flux is analogous

to current density, and temperature difference is analogous to voltage difference.

Nodes in the thermal network represent positions whose temperatures appear in

the simultaneous equations. The four nodes in the thermal networks for the check

cases represent the external fluid at the front and back surfaces and the front and

back surfaces of the solid itself. Equation (97) is a statement of energy balance for

the front and back surfaces of the solid. It is analogous to a statement of Kirch-

hoff's current law at the nodes corresponding to the front and back surfaces of the

solid. Equations (94)-(96) are thermal analogies to Ohm's law from which thermal

resistances for convection at the front and back surfaces and conduction through
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the solid can be defined as follows:

(R,...) RoT h RONT (98)

1
(Rt,conv )BACK h BACK (99)

Rn,ood = L (100)

The heat generation on the front surface is modeled as a constant current into the

network at the front surface.

To use the electrical analogy with the finite-difference model, non-dimensional

thermal resistances and surface heat generation are determined by non-dimension-

alizing the terms in Equations (94)-(97). Non-dimensional thermal resistances,

surface heat generation and fluid temperatures for use in the preheating and dis-

turbance problems are summarized by Table 1. To help visualize the thermal

networks, the initial temperature, T, can be defined as a ground potential from

which all other potentials are referenced.

Results for two cases, one a preheating problem and the other a disturbance

problem are shown in Figures 9 and 10. The figures include a diagram of the

corresponding thermal network for the conditions of the check case. The preheating

problem shown in Figure 9 uses Biot numbers of 1.0 for the front surface and 0.5 for

the back surface. The disturbance problem shown in Figure 10 uses Biot numbers

of 0.5 for the front surface and zero for the back surface and a non-dimensional

surface heat generation of 0.2. The analytical solution for this case is independent

of the Biot number on the front surface. All cases used a non-dimensional time step

of 0.004 and a non-dimensional step size of 0.1 in the axial direction. Results for the

other preheating problems and disturbance problems are given in Appendices B.1.1

and B.1.2, respectively.

The finite-difference model requires a tolerance for use in the convergence

criterion for all the steady-state problems. Section 2.3.7 explains the convergence
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Table 1. Summary of Non-Dimensional Terms in the Electrical Analog

Preheating Problem Disturbance Problem

0+T - T T -Ti.
9qlhFOr (dTFRoNr - Ti)

+q q
q qg dhFRoNT (dTFRONT - Tl)

ph FRO NT L BI AFRONT L BRN

,adk p FRONT k diRN

(R Ri FOTdBz FRONT
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criterion used in the model. The finite-difference model converges when the rate

of change becomes small rather than when the error in the steady-state solution

becomes small. As a result, the proximity of the transient solution to the true, an-

alytical, steady-state solution when the model converges varies with the conditions

as well as with the tclerance used in the convergence criterion. The steady-state

check cases used a tolerance of 0.01 in the convergence criterion (see Section 2.3.7).

For all check cases in the axial direction, a tolerance of 0.01 in the convergence cri-

terion caused the transient solution to converge within 2 percent of the steady-state

solution.

The two cases shown in Figures 9 and 10 were run with different values for the

tolerance in the convergence criterion to demonstrate that the transient solutions

do progress logically towards the steady-state solution. Figures 11 and 12 show the

results. Also, the heat transfer in all cases was indeed one-dimensional indicating

that there probably are no gross errors in the derivatives for the axial direction.

3.2 One-Dimensional, Steady-State Heat Transfer in the Radial Direction

There are four cases for one-dimensional, steady-state heat transfer in the

radial direction. To obtain one-dimensional heat transfer in the radial direction,

the heat flux across the front and back surfaces must be set to zero by setting

the Biot numbers and the surface heat generation equal to zero. Because surface

heat flux is zero, the resulting nodal equations in both the preheating and the

disturbance problems are the same.

Both the single-material and the two-material problems produce one-dimen-

sional heat transfer in the radial direction. For simplicity, property ratios of unity

were used in the cases run on the two-material problem. Because of the way

in which the radial dimension is non-dirnensionalized, the results for the single-

material problem and the two-material problem are different. Therefore, results

for both problems are given.
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The analytical solutions for one-dimensional, steady-state heat transfer in

the radial direction were determined by solving the differential equation. For one-

dimensional, steady-state heat transfer in the radial direction, Equation (3) in

non-dimensional form reduces to

1 a.+ r+-o =0 (101)
T+ 5r+ ( r +

Integrating the equation twice yields

-- 
(102)-r-+ r +

0+ Clln(r+ ) + C 2  (103)

where C1 and C 2 are constants whose value depends on the boundary conditions.

When the inner-radial boundary condition is the symmetry condition of

Equation (8), C1 is equal to zero. When the inner-radial boundary condition

is a specified temperature, it is necessary in general to specify the temperature at

an inner radius other than zero, so one or more of the inner-radial nodes must be

maintained at a constant temperature. The analytical solution for the rest of the

model is then equivalent to the solution for heat transfer in a hollow cylinder with

a specified temperature at the inner radius. Heat transfer in a hollow cylinder with

inner radius

R+INNER = 1.5Ar+

is simulated by equating the temperature of the first two radial nodes to a con-

stant value. Because their temperatures are held constant, the nodal equations for

these first two radial nodes are not used. Therefore, the check cases which spec-

ify a temperature for the inner-radial boundary condition do not check the radial

derivatives for the nodal equations on the centerline.

The first radial check case checks the radial derivatives for nodes on the

centerline by using the symmetry condition for the inner-radial boundary condition.

The next three radial check cases check the three limiting cases for the outer-radial
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boundary condition. Table 2 summarizes the boundary conditions and analytical

solutions for the four one-dimensional, steady-state check cases for radial heat

transfer.

For each check case using the single-material problem, the non-dimensional

radial step size was 0.1. For each check case using the two-material problem,

the non-dimensional radial step size was 0.2 and the non-dimensional geometry

parameter, RMAX/RcYL, was 2.0. All cases used a total of eleven nodes in the

radial direction, a non-dimensional time step of 0.003 and a tolerance of 0.01.

Table 3 summarizes the analytical solutions for each of the radial check cases for

both the single-material and two-material problems.

Figure 13 shows the results for the second check case using the single-material

problem. The tolerance used in the convergence criterion was again varied to

demonstrate that the transient solution does progress logically toward the steady-

state solution, and this result is shown in Figure 14. The results for the other

0 check cases using the single-material and two-material problems are given in Ap-

pendices B.2.1 and B.2.2, respectively. In the steady-state cases for heat transfer

in the radial direction, some of the solutions converged farther from the true steady

state solution than others. In general, cases in which heat flows radially outward

seem to have a much slower rate of change so that the transient solution converges

farther from the true steady-state solution. Cases using the two-material problem

also generally converged farther from the true steady-state solution. Nevertheless,

the transient profiles do progress logically and eventually converge on the steady

state solution. The heat transfer was indeed one-dimensional in each case showing

that there probably are no gross errors in the radial derivatives.

3.3 One-Dimensional, Transient Heat Transfer in the Axial Direction

Three cases for one-dimensional, transient heat transfer were used to check

the finite-difference model and the series solution. The transient check cases only
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1.20 Single-Material Problem: e, vs. r+

1.00 - -

0.80

0. 0.60

0.40 Case 2:

Boundary Conditions

+(r+  .15) = 1
0.20 _+ 0

Analytical Solution Analytical Solution

Finite-Difference
0+(r+) = 1 Estimate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r
+

Figure 13. Sample Result for Steady State Heat Transfer in the Radial Direction
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Single-Material Problem: 0+  vs. r+

1.20

1.00 - - - . . - ..-..
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0+ Analytical Solution
O. 0.60 - tolerance= .001
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-O - tolerance= .01
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0.40 Case 2:

Boundary Conditions
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Figure 14. Sample Result for Steady State Heat Transfer in the Radial Direction
with Different Values for the Tolerance
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0 include problems with axial heat transfer. This should be sufficient since both the

axial and radial derivatives proved accurate for steady-state heat transfer.

The transient cases were used in the following ways:

* To check the accuracy of the finite-difference model in producing non-dimen-

sional surface temperatures and surface heat flux values.

e To check the accuracy of the non-dimensional series solution for cases in

which the solid does behave as an initially isothermal, semi-infinite solid.

* To investigate the problems encountered when using the non-dimensional

surface temperatures produced by the finite-difference model in the series

solution.

* To determine suitable spatial and time steps to get sufficient accuracy from

the model in the analysis and to estimate this accuracy.

0 Since heat transfer is one-dimensional in these check cases, it is not necessary

to average surface temperatures or surface heat fluxes. Nevertheless, each case

averaged the temperatures and heat fluxes of the first three radial nodes on the

front surface in order to check the equations for finding average surface temperature

and heat flux. The simulation of each case on the finite-difference model used non-

dimensional spatial step sizes of 0.1 and three different non-dimensional time steps

of 0.004, 0.001 and 0.0005.

The sections that follow describe each of the transient check cases giving

the analytical solution for each and showing how each was implemented on the

finite-difference model. The final section summarizes the results from the transient

cases. Graphs from the first transient check case-the semi-infinite solid with

convection-are used to illustrate points in the discussion. Graphs for the other

two transient check cases are given in Appendices B.3.1 and B.3.2.

0
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3.3.1 The Semi-Infinite Solid with Convection One-dimensional heat trans-

fer in a semi-infinite solid with constant external fluid temperature and convection

coefficient is readily simulated using the finite-difference model for the disturbance

problem with a fully-insulated, outer-radial boundary. Figure 15 illustrates the

conditions used in the two-dimensional model to simulate this transient solution.

The parameters -f, r and dBiBACK are set to zero. Both the single-material problem

and the two-material problem work. However, since both produce identical results,

the results from only one are shown.

The cylinder will behave as a semi-infinite solid only for times less than the

time it takes the leading edge of the thermal disturbance to travel the length of

the cylinder. Using the approximation given by Equation (2), the simulation for

this transient check case should only be valid for non-dimensional times less than

1
t+ - = 0.0625 (104)

The check case was run slightly longer to non-dimensional time of 0.075.

The analytical solutions for non-dimensional surface temperature and surface

heat flux for this transient check case are [4 :pp.2 02-206]

0 ,  1 - exp ((Bi)2t+) erfc ((Bi)t+12 ) (105)

+ = l- +,=exp((Bi)2t+)erfc ((Bi)t+1/2 ) (106)

where Bi is the Biot number at the front surface in the simulation, which was

chosen to be 2.0.

3.3.2 The Semi-Infinite Solid with Constant Surface Heat Flux One-dimen-

sional heat transfer in a semi-infinite solid with constant surface heat flux is simu-

lated by a modified version of the finite-difference model for the preheating problem

with a fully-insulated, outer radial boundary. By setting pBi FRoT equal to zero

and the ratio RDISKIRcYL equal to one, the heat flux over the front surface of the
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Semi-Infinite Solid Two-Dimensional Model

h, Tf hFRONT' TfFRON T

L r

RMA X orR y L

Figure 15. Simulating a Semi-Infinite Solid with Constant External Fluid Tem-
perature and Convection Coefficient
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cylinder is constant and equal to the surface heat generation:

qs = a (107)

Because both the fluid temperature and the convection coefficient are not defined

in the analytical solution for this case, the non-dimensional form of the dependent

variables must be changed to

P0++ T - T
(qgL/k) (108)

pq++ = q (109)qg

The non-dimensional equations using this non-dimensional form for the dependent

variables are again identical to the previous equations except in the boundary

conditions for the front and back surfaces. The nodal equations for nodes on the

front and back surfaces can be easily modified to use this non-dimensional form in

the finite-difference model.

Figure 16 illustrates the conditions used in the two-dimensional model to

simulate this transient solution. The Biot number for the back surface is set to

zero. Because the simulation uses surface heat generation, only the single-material

problem will produce one-dimensional heat transfer. The simulation is again only

valid for times less than the time it takes the leading edge of the disturbance to

travel the length of the cylinder. This transient check case was also run to :, )a-

dimensional time of 0.075.

The analytical solutions for non-dimensional surface temperature and surface

heat flux us*ing the moditied, non-dimensional form for the preheating problem are

[4:pp.202-206]

12t+)/2
7r 1/2

+ = 1 (111)

Because the surface heat flux is inheren* in the finite-difference m(del, it is not

necessary to check the finite-difference model's estimate for surface heat flux. This
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Semi-Infinite Solid Two-Dimensional Model
(Single-Material Problem Only)

qs qg

STZ TZ

L
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Figure 16. Simulating a Semi-Infinite Solid with Constant Surface Heat Flux
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transient check case is still useful, however, for checking the accuracy of the finite-

difference model's estimate for surface temperature and the accuracy of the series

solution's estimates for surface heat flux using both the analytical surface temper-

atures and the surface temperatures produced by the model.

3.3.3 The Plane Wall with Convection One-dimensional heat transfer in

a plane wall with constant external fluid temperature and convection coefficient

on both sides is also easily simulated using the disturbance problem with a fully-

insulated, outer-radial boundary condition. The parameter 7 is set to zero, while

the parameter r is set to one. The Biot numbers for the front and back surfaces

nust be equal. Because surface heat generation is not used, both the single-

material and two-material problems work for this transient check. However, the

results are again identical, so the results from only one are shown. Figure 17 illus-

trates the conditions used in the model to simulate one-dimensional heat transfer

in a plane wall with convection.

Although the simulation for the heat transfer in a plane wall is valid for all

time, the cylinder ceases to behave as a semi-infinite solid for times greater than

the time it takes the leading edge of the disturbance to reach the midplane of the

wvall:
t+  - 1/64 _ 0.016 

(112)

For times greatei than this, then, one can not use this transient check case to

check the accuracy of the series solution. However, this transient check case is still

useful for checking the accuracy of values for surface temperature and heat flux

produced by the finite-difference model. The transient check case using the plane

wall solution was also run to non-dimensional time of 0.075.

The analytical solutions for the plane wall are infinite-series solutions. The
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Plane Wall Two-Dimensional Model

-h, Tf hFRCNT' Tf RoNr
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Figure 17. Simulating the Plane Wall with Constant External Fluid Temperature

and Convection Coefficient on Both Sides
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solutions can be approximated by the the first four terms to give [4 :pp.18 3 -187

4+= 1 -Cexp (-4(t+)cos(ci) (113)
1=1

4

q+= 1 0+= Ciexp(-4('t+)cos((i) (114)
1=1

where the coefficient CI is given by

=4 sin(()
2 1 + sin(2(1) (115)

and the constants (I are the lt eigenvalues of the characteristic equation

2(1 tan ((I) = BI (116)

Bi is the Blot number for both front and back surfaces. For the Biot number of

2.0 used in the simulation, the first four eigenvalues are

1= 0.8603 rad (117)

(2 = 3.4256 rad (118)

( = 6.4376 rad (119)

4= 9.5293 rad (120)

For non-dimensional time of 0.002, the magnitude of the fourth term in the series

is 0.0104. Since this is an alternating series, the error in the solution using the

truncated series is less than 0.0104 in magnitude for all non-dimensional times

greater than 0.002.

3.3.4 Results from the Transient Check Cases Because the first check case

is similar to the disturbance problem of the analysis, the model should behave

similarly in the analysis as in this first check case. For this reason, the accuracy

of the model in the first check case should give a good indication of the accuracy

of the model in the analysis. The one major shortcoming is the fact that this first

check case does not exercise the radial derivatives. Nevertheless, the results from
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the first transient check case are given in this section, and from these results an

estimate of the expected accuracy of the model in the analysis is determined. The

graphs of the results for the second and third transient check cases are given in

Appendices B.3.1 and B.3.2, respectively. For the most part, the trends in the

accuracy seen in the first check case are also seen in the other two transient check

cases.

Figure 18 shows the surface temperatures produced by the finite-difference

model in thf: first check case using values of 0.004, 0.001, and 0.005 for the non-

dimensiona. time step. There are some problems with the surface temperatures

produced by the finite-difference model. First of all, as the non-dimensional time

step is reduced, the surface temperatures converge on values lower than the analyt-

ical values. This error in the surface temperatures produced by the finite-difference

model is most likely related to the magnitude of the temperature gradients near

the surface. The error is greatest for small times when the temperature gradi-

ents are largest. Nevertheless, the surface temperatures produced by the model

are quite accurate if sufficiently small non-dimensional spatial and time steps are

used. Using spatial steps of 0.1 and a time step of 0.001 or less, the finite-difference

estimates for surface temperature are within 2.7 percent of the analytical value at

non-dimensional time of 0.01 and within 0.03 percent of the analytical value at

non-dimensional time of 0.05.

The rate of change of surface temperature with respect to time as seen by the

slope of the curves in Figure 18 is severely affected by these seemingly small errors

in the surface temperatures produced by the model. For small time, the slope of

the curves for the surface temperatures produced by the model is significantly lower

than in the analytical solution. For larger times, the slope is slightly higher. This

error in the rate of change of surface temperature is import:-it because the series

solution uses the rate of change of surface temperature rather than the surface

temperatures themselves to determine the surface heat flux.
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Finite-Difference Model
Valuws for 9+ VS. t

0.50 IThe Semi-Infinite Solid with Convection
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Figure 18. Finite- Difference Model Values for 0+ vs. t+ for the Semi-Infinite Solid

with Convection

69



Stability and oscillation are also a concern with the explicit finite-difference

model. Oscillations can have a significant effect on the results for surface heat flux

using the series solution because the oscillations cause large errors in the calculated

rate of change of surface temperature. Figure 18 shows oscillations in the finite-

difference estimates for surface temperature using a non-dimensional time step of

0.004.

Oscillations are a more likely problem for small time when the curvature of

the surface temperature function of time is greatest. The oscillations are caused by

the over prediction in the explicit scheme as described in Section 2.3.6. The non-

dimensional surface temperature at the end of the first time step is grossly over

predicted because the non-dimensional time step is too big to accurately follow

the solution when the rate of change in slope is high. The over predicted surface

temperature at the end of the first time step causes the rate of change for the next

time step to be low, which in turn causes the surface temperature at the end of

the following time step to be under predicted. The process repeats itself a few

times until the oscillations die out when the curvature of the surface temperature

function becomes small enough for the finite-difference model to follow the solution

with the given time step. As is readily seen in Figure 18, the oscillations cause

much greater error in the slope of the curve for surface temperature than in the

actual values for surface temperature. The time step needed to prevent oscillations

depends on the conditions in the simulation and the spatial step sizes being used.

Because of the way in which the disturbance problem is non-dimensionalized,

the accuracy of the finite-difference estimates for surface heat flux depends solely on

the accuracy of the surface temperatures produced by the model (see Equation (90)

and the discussion in Section 2.5). Figure 19 shows the finite-difference estimates

for surface heat flux from the first transient check case using non-dimensional

time steps of 0.004, 0.001, and 0.0005. The finite-difference estimates tend to be

high since the surface temperatures tend to be low. Also, if the non-dimensional

0
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Finite-Difference Estimate

1.00 for q+ vs. t+

The Semi-infinite Solid with Convection
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Figure 19. Finite-Difference Estimates for q. vs. t+ for the Semi-Infinite Solid
with Convection
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time step is too big, the finite-difference estimates for surface heat flux oscillate

about the analytical values. Nevertheless, the accuracy is quite good when using

small enough step sizes. Using non-dimensional spatial step sizes of 0.1 and a non-

dimensional time step of 0.001 or less, the finite-difference estimate for surface heat

flux is within 0.7 percent of the analytical value at non-dimensional time of 0.01

and within 0.02 percent of the analytical value at non-dimensional time of 0.05.

Errors in the series solution for surface heat flux when using surface tempera-

tures produced by the finite-difference model may be due either to the inaccuracies

in the surface temperatures produced by the model or to the inherent inaccuracy

of the series solution. To distinguish between the two causes, the series solution

for surface heat flux was run using both the analytical values for surface temper-

atures and the surface temperatures produced by the finite-difference model. It

is important to ensure that large errors in the series solution during the analysis

are not caused by inaccuracies in the surface temperatures produced by the finite-

difference model. If this is the case, then the finite-difference model does not model

the laboratory experiment with sufficient accuracy, and the results are meaning-

less. Running the series solution with the analytical values for surface temperature

is also helpful for evaluating any inherent inaccuracy in the series solution. The

series solution is not an exact solution, and its accuracy depends on the time step

used in the series.

Figure 20 shows the series solution estimates for surface heat flux in the first

transient check case when using analytical values for surface temperature. Because

the approximation in the series solution comes from assuming a piecewise linear

function of time for the surface temperature, the series solution is more prone

to error at small time when the curvature in the surface temperature function of

time is larger. Since more recent terms in the series solution are weighted more

heavily, the series estimate becomes increasingly :-iore accurate for larger time as

the curvature in the surface temperature function of time in this transient check
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Series Estimate for q.+

1.0(Using Analytical Values for e.) VS.
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Figure 20. Series Solution Estimates for q+ (Using Analytical Values for 9+) vs.
t+ for the Semi-Infinite Solid with Convection
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case decreases. For cases in which the surface temperature rises monotonically such

as this, the series solution will tend to overestimate surface heat flux. Overall, the

series solution is quite accurate if a small enough time step is used in the solution.

Using a non-dimensional time step of 0.001 or less in the series solution gave series

solution estimates for surface heat flux within 0.6 percent of the analytical value

at non-dimensional time of 0.01 and within 0.05 percent of the analytical value at

non-dimensional time of 0.05.

There are, however, significant problems with the series solution when us-

ing surface temperatures produced by the finite-difference model. These errors

are caused by inaccuracies in the surface temperatures and not by the series so-

lution. The error in the series solution estimate is significant even though the

error in the value of the surface temperatures is small because the series solution

uses the rate of change of surface temperature to evaluate surface heat flux. In

comparison, the finite-difference estimates for surface heat flux do not have the

same problems because the finite-difference estimates use the actual value of the

surface temperature rather than the rate of change of surface temperature. First

of all, the rate of change of surface temperatures produced by the finite-difference

model is low for small time, so the series estimates are also initially low. For larger

times, the rate of change is slightly high which may cause the series solution to

be higher than it would be otherwise. However, any over prediction in the series

solution for larger times may be offset by the initial under prediction as is the case

in the second transient check case (see Figur: 57 in Appendix B.3.1). Secondly,

if the non-dimensional time step used in the model is too big so that oscillations

are present in the surface temperatures, the series solution estimates can oscillate

severely due to the extreme oscillation in the rate of change of surface temperature.

Figure 21 shows the series solution estimates for surface heat flux when us-

ing the surface temperatures produced by the finite-difference model in the first

transient check case with non-dimensional time steps of 0.004, 0.001 and 0.0005 in

0
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Figure 21. Series Solution Estimates for q+ (Using the Finite- Difference Model

Values for 0+) vs. t+ for the Semi-Infinite Solid with Convection
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both the finite-differnce model and the series. Even with a non-dimensional time

step of 0.0005, the initial under prediction in the series solution is severe. A severe

initial under prediction occurs in all three transient check cases (see Figures 57

and 61 in Appendices B.3.1 and B.3.2, respectively). However, by non-dimensional

time of 0.01, the series solution regains its accuracy. Using non-dimensional spatial

step sizes of 0.1 in the finite-difference model and a non-dimensional time step of

0.001 or less in both the finite-difference model and the series solution gave series

solution estimates for surface heat flux within 2.7 percent of the analytical value

at non-dimensional time of 0.01 and within 0.7 percent of the analytical value at

non-dimensional tixe of 0.05.

In summary, the firtite-difference model produces surface temperatures with

good accuracy usin . aon-iimensional, spatial step sizes less than or equal to 0.1

and a non-dimcnsior'al time step less than or equail to 0.001. The series solution

is also quite accurate given exact data when the non-dimensional time step in

the series is less than or equal to 0.001. However, the series solution for surface

heat flux using the surface temperatures produced by the finite-diffe:-nce model

does have some problems. For small times, the series solution under predicts the

surface heat flux due to the large error in the initial rate of change of the surface

temperatures produced by the finite-difference model. The series solution can

also have significant errors if oscillations are present in the surface temperatures

produced by the finite-difference model. Nevertheless, the series solution for surface

heat flux using surface temperatures produced by the model is accurate for non-

dimensional times greater than 0.01 if non-dimensional spatial step sizes less than

or equal to 0.01 are used in the rrodel and non-dimensional time steps less than or

equal to 0.001 are used in both the model and the series.

Accurate results in the analysis require accurate results for both tihe finite-

difference estimates for surface heat flux and the series solution estimates for surface

heat flux using the surface temperatures produced by the finite-difference model.
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For non-dimensional times greater than 0.01 in the first transient check case, the

finite-difference estimates are within 0.7 percent of the analytical values for surface

heat flux and the series solution estimates are within 2.7 percent of the analytical

values when using non-dimensional spatial step sizes of 0.1 in the finite-difference

model and non-dimensional time steps less than or equal to 0.001 in both the model

and the series. To be conservative, one can assume that these percentages apply to

the maximum non-dimensional, external surface heat flux of 1.0. Then, the non-

dimensional error in the finite-difference estimate for surface heat flux is always less

than 0.007 and the non-dimensional error in the series solution estimate is always

less than 0.027. This error estimate is more conservative for longer times since the

error decreases with time. It is important to note that the transient check cases

did not employ the radial derivatives. One would expect the radial derivatives to

add some additional error to the results in the analysis. Then, a reasonable and

cdnservative estimate of the expected error in the percent difference used in the

analysis, (q , ) x 100.00 , for non-dimensional times greater than 0.01 would

be 4.0. Figure 22 shows the finite-difference and the series solution estimates for

surface heat flux using the surface temperatures produced by the finite-difference

model in the first transient check case with a non-dimensional time step of 0.0005

in both the model and +he series.

The transient check cases also point out the need to collect temperature data

carefully when using the series solution on experimental data. The series solution

is extremely sensitive to eriors in the data for surface temperatures because the

series solution uses the rate of change of temperature to evaluate surface heat flux.
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0
IV. Analysis and Results

This analysis investigates the effect of various parameters in the two-dimen-

sional model on the accuracy of the series solution for the average surface heat

flux in the region of the heated disk. Because the total number of parameters in

the model is large, the analysis is limited by allowing only some of the parameters

to vary and setting the others constant. A limited range or number of values is

investigated for each of the parameters which is allowed to vary.

Section 2.2 lists the non-dimensional parameters in the two-dimensional mod-

el. Four additional non-dimensional parameters occur in the finite-difference model.

They are the tolerance used in the convergence criterion for the preheating problem

and the three non-dimensional step sizes; Az + , Ar+ and At+.

Some of the parameters are set constant for all runs. The Biot numbers at the

front and back surfaces during the preheating problem are set to 0.01. This value

is chosen using a typical convection coefficient for free convection of 4.0 W/m 2 • K

and typical values for L and k from References [3] and 17:p. 6 7 2], respectively. The

parameter 7 in the disturbance problem is set to zero, and the Biot number at

the back surface during the disturbance problem is kept at 0.01. Setting 7 to

zero and keeping dBiBAcK equal to 0.01 implies that the conditions at the back of

the test specimen remain the same for both the preheating and the disturbance

problems and are typical conditions for free convection. Only two values, 0.1 and

1.0, are used to investigate a reasonable range for the Biot number at the front

surface during the disturbance problem. Because PBiFRONT is held constant, the

parameter , equivalently describes the Biot number at the front surface during the

disturbance problem when preheating is used.

The transient check cases show that the percent difference, (qsR - x

100.00 , should be accurate to within 4.0 in the analysis for non-dimensional

0
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times greater than 0.01 when using non-dimensional spatial step sizes of 0.1 or less

and a non-dimensional time step of 0.001 or less. The spatial step sizes actually

used depend on the value of the geometry parameter RDISK/RcYL. The geometry

parameter ROISK IRcYL is set to 1/6, 1/8 and 1/12 using non-dimensional spatial

step sizes of 0.111 (1/9), 0.083 (1/12) and 0.056 (1/18), respectively. The largest

non-dimensional time step used in any of the runs is 0.001.

The time step required to maintain stability in the finite-difference model

varies bctween runs. In some cases, a time step much smaller than 0.001 is used.

The accuracy of the series solution improves when smaller time steps are used in

the series. However, each run uses the temperature values at non-dimensional time

steps of 0.001 in the series solution regardless of the time step used in the finite-

difference model to avoid disturbing the results by varying the time step used in the

series solution. All runs are ended at non-dimensional time of 0.07 since thin-film

gages are generally not used for times longer than the estimated time it takes the

leading edge of a thermal disturbance to reach the back surface of the cylinder,

which is approximately 0.0625 in non-dimensional time (see Equation (2)).

In another attempt to clarify and simplify the analysis, the runs are separated

into groups which isolate the causes of two-dimensional heat transfer. One group

of runs, the adiabatic cases, investigates the effect of localized heat generation and

preheating with no heat flux across the outer-radial boundary of the cylinder. An-

other group of runs, the non-adiabatic cases with no heat generation or preheating,

investigates the effect of allowing heat flux across the outer-radial boundary of the

cylinder in the absence of heat generation or preheating. A third group of runs,

the combined cases or non-adiabatic cases with heat generation and preheating, in-

vestigates the effect of adding preheating and subsequent heat generation to a few

of the runs from the non-adiabatic cases.
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4.1 Adiabatic Cases

The adiabatic cases investigate the effect on the series solution of the two-

dimensional heat transfer caused by heat generation and preheating in the absence

of heat flux across the outer-radial boundary of the cylinder. All runs in the

adiabatic cases use the single material problem with the fully-insulated, outer-radial

boundar.y condition of Equations (26) and (34). All runs also use the preheating

problem except the few which investigate the effect of heat generation during the

disturbance with no prior preheating.

A number of parameters are allowed to vary for the adiabatic cases. Values

between 0.0 and 0.5 are investigated for the parameter y. The geometry parameter

LIRyL is varied between 0.2 and 5.0, while the geometry parameter RDIK /ReYL

is varied between the three values 1/6, 1/8 and 1/12. The tolerance used in the

convergence criterion for the preheating problem is varied between the three values

of 0.5, 0.1 and 0.05; and a few runs do not use any preheating. Finally, all runs

are duplicated using values of 10.0 and 100.0 for the parameter /3.

The results from the adiabatic cases show that preheating and subsequent

surface heat generation should have no effect on the results as long as the transients

from the preheating problem are allowed to settle down before beginning the test.

Figure 23 shows the results with the parameter -f varying and using a value of 10.0

for )3, 1/8 for RD,sK /RCYL, 1.0 for L/RcYL and 0.1 for the tolerance. The results

seem to show a trend in the series solution to overestimate slightly with increasing

value of -y. However, the percent differences are less than the expected error in

the model. Using a value of 0.5 for -y, the percent difference is between 0.5 and

0.7 between non-dimensional time of 0.01 and 0.07, and the percent difference is

less using smaller values for y. When a larger value for 3 is used, the percent

difference is larger but still less than the expected error in the model. Figure 63 in

Appendix C.1 shows the results with -y varying using a value of 100.0 for 0. The

percent difference using a value of 0.5 for -y increases to between 2.0 and 3.0 when
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13 is 100.0.

Although heat generation does not affect the results when the transients from

the preheating problem are allowed to settle down, the effect of heat generation is

large if the preheating problem is not run. Figure 24 shows the results with the

tolerance for the convergence criterion of the preheating problem varying and using

a value of 10.0 for 13, 1/8 for RDIsJRcyL, 1.0 for LIRCYL and values of 0.05 and

0.2 for -y. Tolerances of 0.5, 0.1 and 0.005 cause the preheating problem Lo ,_eon-

verge at non-dimensional times of 0.118, 2.600 and 10.326, respectively. Changing

the tolerance between these three values cause only slight changes in the percent

differences which remained below the expected error of the model. However, there

is significant overestimation when heat generation is used with no preheating. The

percent difference when using a value of 0.2 for y and without preheating is be-

tween 6.0 and 10.0. Figure 64 in Appendix C.1 shows even greater overestimation

when using a value of 100.0 for 3.

The overestimation in the series solution caused by not allowing the transients

to settle down during the preheating problem stands to reason. The overestima-

tion results from greater increases in surface temperature than would be present

from the external disturbance alone since the disturbance from the heat generation

has not established itself yet. The series solution attributes the greater increase in

surface temperature to a greater external surface heat flux than is actually present.

It is likely, however, that if one used a thin-fim gage for very short times, i.e. only

as long as the assumption of one-dimensional heat transfer was valid, and were

able to expose the system to the disturbance at the same time as turning on the

instrumentation, one could correct the series solution for the overestimation caused

by the heat generation. For one-dimensional heat transfer, the disturbance in the

region of the heated disk would be composed of two separate disturbances, the

surface heat generation and the external disturbance. Superposition holds because

the equations are linear. Therefore, the resulting surface temperature changes are
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the sum of the changes due to the two separate disturbances. Given the total sur-

face temperature changes, the series solution should accurately estimate the total

surface heat flux and could be corrected to yield the heat flux due to the external

disturbance alone by subtracting the value of the surface heat generation. For

longer times, one can not make this correction because the heat transfer from the

localized surface heat generation becomes two-dimensional. Even though super-

position still holds, the correction needed for the series solution will be something

less than the value of the surface heat generation.

Varying the parameter LIRYL does not affect the results. Figure 25 shows

results with the parameter LIRYL varying using a value of 10.0 for /3, 1/8 for

R sDISK/RcYL 0.1 for the tolerance and values of 0.05 and 0.2 for -Y. The percent

difference is small and less than the expected accuracy of the model. Figure 65 in

Appendix C.1 shows similar results using a value of 100.0 for /3.
Varying the parameter RDISK./Rcy L also does not affect the results. Figure 26

shows the results with the parameter RDISK/RcYL varying using a value of 10.0

for /3, 1/8 for RDJsK IRcYL, 0.1 for the tolerance and values of 0.05 and 0.2 for y.

The percent difference is again very small and less than the expected error in the

model. Figure 66 in Appendix C.1 shows similar results using a value of 100.0 for

/. The percent differences are larger but still less than the expected accuracy of

the model.

4.2 Non-Adiabatic Cases with No Heat Generation or Preheating

The non-adiabatic cases with no heat generation or preheating investigate

the effect on the series'solution of the two-dimensional heat transfer which results

from allowing heat flux across the outer radial boundary of the cylinder in the

absence of heat generation or preheating. The preheating problem is not used for

these cases, and the parameter -y is set to zero.

The effects of allowing heat flux across the outer-radial boundary of the
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cylinder are bounded by the effects seen in the limiting cases. Each of the three

limiting cases for heat flux across the outer-radial boundary of the cylinder is

implemented using the single-material problem. The limiting case for heat flux

out across the outer-radial boundary of the cylinder uses Equation (35) for the

outer-radial boundary condition on the cylinder. The limiting case for heat flux in

across the outer-radial boundary of the cylinder uses Equation (36) for the outer-

radial boundary condition on the cylinder. The case for no heat flux across the

outer-radial boundary of the cylinder is the adiabatic case.

In the absence of heat generation and preheating, the heat transfer in the

adiabatic case will be one-dimensional, so the series solution should be the true

solution for times up to the time when the leading edge of the external disturbance

reaches the back of the cylinder. The only approximation in the series solution for

the adiabatic case with no heat generation or preheating is caused by assuming

the surface temperature to be a piece-wise linear function of time (see Section 2.4).

Figures 23 and 63 show that using a value of 0.0 for -y in the adiabatic case does

indeed yield a percent difference very near 0.0. Thus, the percent difference due

to any intermediate condition causing heat flux out across the outer-radial bound-

ary of the cylinder will be bounded by zero and the percent difference found in

the limiting case for heat flux out. Likewise, the percent difference due to any

intermediate condition causing heat flux in across the outer-radial boundary of the

cylinder will be bounded by zero and the percent difference found in the limiting

case for heat flux in.

Two intermediate cases for heat flux across the outer-radial boundary of the

cylinder are also investigated. Both use the two-material problem with a geometry

parameter RMAx/RcYL equal to 2.0. The intermediate case for heat flux out models

teflon as the insulating material in a test specimen. The property ratios k'/k and

(pcp)/(pcp)' are .33 and .49, respectively, [7], [4:p.688] and [6:p.608]. The boundary

88



condition on the outer-radius of the surrounding material for this case is

0+(r' = 2.0) = 0 (121)

The intermediate case for heat flux in across the boundary uses property ratios of

1.0 and 6.0 for k'/k and (pcp)/(pC,)', respectively. The boundary condition on the

outer-radius of the surrounding material for this case is

90+
r 0 (122)

) +=2.0

Because the non-adiabatic cases with no heat generation or preheating do

not use the preheating problem, the parameter f3 does not really apply. Instead,

values of 0.1 and 1.0 are used for the parameter dBz FRONT, the Biot number at the

front surface. The geometry parameter LIRYL is varied between 0.2 and 5.0, and

the geometry parameter RDISK/RcYL is varied between the three values of 1/6, 1/8

and 1/12.

Figures 27, 28, 29 and 30 show the resalts for the limiting case for heat flux

out, the intermediate case for heat flux out, the limiting case for heat flux in and the

intermediate case for heat flux in, respectively, as the geometry parameter LIRCYL

varies using a value of 10.0 for the parameter 03 and 1/8 for the geometry parameter

RDISK/RcyL. As seen in the results, the series solution underestimates the external

surface heat flux for the cases with outward radial heat flux and overestimates the

external surface heat flux for cases with inward radial heat flux. For all cases,

there is a bounding value for the geometry parameter L/RcyL such that any lower

value for LIRCyL gives a minimal percent difference. For the limiting case for heat

flux out, limiting LIRcYL to 1.0 keeps the percent difference less than 2.0. For

the intermediate case for heat flux out, limiting L/ReL to 2.0 keeps the percent

difference less than 6.0. For the limiting case for heat flux in, limiting LIRCYL to

0.6 keeps the percent difference less than 5.0. Finally, for the intermediate case for

heat flux in, limiting LIRYL to 1.0 keeps the percent differnce less than 2.0.
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For values of LIRYL larger than these bounding values, the percent differ-

ences become large. For the limiting case for heat heat flux out, using a value

of 2.0 for LIRcyL and 0.1 for dBiFRONT gives a steadily increasing percent differ-

ence which reaches 30 by non-dimensional time of 0.07. For the intermediate case

for heat flux out, using a value of 4.0 for L/RCYL and 0.1 for dBiFRONT gives a

steadily increasing percent difference which reaches 13 by non-dimensional time of

0.07. For the limiting case for heat flux in, using a value of 0.8 for L/KYL and

0.1 for dBiRONT gives a rapidly increasing percent difference which reaches 85 by

non-dimensional time of 0.07. Finally, for the intermediate case for heat flux in,

using a value of 2.0 for LIRw and 0.1 for dBi RONT gives a steadily increasing

percent difference which reaches 34 by non-dimensional time of 0.07. In all cases,

the error in the series solution increases with time, so one may obtain better accu-

racy with larger values for the parameter LIRcL if one is only interested in results

for shorter times. Although the results from the limiting case for heat flux in are

severe, one should note that the conditions which this limiting case model are quite

severe and unlikely to approximate any actual conditions in the laboratory.

For a short time after the disturbance, the heat transfer in the region of

the disk should be approximately one-dimensional. Therefore, the series solution

should theoretically be accurate for short times. Some of the results clearly show

this delay in the onset of error in the series solution. As would be expected, the

delay in terms of non-dimensional time is greater with smaller values of L/R..L

since the tendency to produce radial gradients is less. As the value of LIRYL

decreases, the resistance to heat transfer in the radial direction increases relative

to the resistance to heat transfer in the axial direction, so the radial gradients

should be smaller when using smaller values for L/RCL.

The trend for the series solution to overestimate or underestimate depend-

ing on the direction of the establishing radial gradients makes sense and can be

explained by examining typical flux plots for the transient heat transfer in the
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cylinder [4:pp.135-137]. A flux plot is a network of isotherms and heat flow lines.

The heat flow lines are drawn with arrows to indicate the direction of the heat

flow and temperature gradient. Heat flow lines must always be perpendicular to

isotherms. The area between adjacent heat flow lines is termed a lane. Heat can

be visualized as flowing in these lanes. In a well drawn flux plot, the heat flux

between two adjacent isotherms in a lane can be estimated by

q& % kA T  (123)
Ad

where q is the heat flux, k is the thermal conductivity, At is the approximate area

of the lane perpendicular to the heat flow line, AT is the temperature difference

between the isotherms and Ad is the approximate distance between the isotherms.

Heat energy must be conserved, so any heat which does not continue to flow in the

lane will cause the temperature to rise. Figure 31 shows a typical flux plot for heat

transfer in an initially isothermal, semi-infinite solid. In contrast, Figure 32 shows

typical flux plots for heat transfer in the intermediate cases for heat flux out and

heat flux in across the outer-radial boundary.

The series solution uses the time history of changes in the surface temperature

to estimate the surface heat flux. The series solution is accurate only if the changes

in surface temperature that do occur are equal to those that would occur in an

initially isothermal, semi-infinite solid with the same time history of surface heat

flux. For the cases that establish outward radial heat flux, the changes in surface

temperature for any given time history of surface heat flux are less than the changes

in surface temperature that would occur in an initally isothermal, semi-infinite

solid with the same time history of surface heat flux. Given the smaller changes

in surface temperature, the series solution underestimates the surface heat flux.

The trend for surface temperature changes to be less in runs that establish

outward radial gradients can be visualized by examining the typical flux plots.

Figures 31 and 32 show flux plots for heat transfer in a semi-infinite solid and

in the cylinder with outward radial gradients, respectively. As can be seen by
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Figure 31. Typical Flux Plot for Heat Transfer in an Initially Isothermal, Semi-
Infinite Solid
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a. Heat Flux Out Across the Outer-Radial Boundary

b. Heat Flux In Across the Outer-Radial Boundary

Figure 32. Typical Flux Plots for Heat Transfer in the Intermediate Cases for
Heat Flux Out and In Across the Outer-Radial Boundary of the Cylin-
der
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the increasing area of the lanes in its flux plot, the heat flux within the solid

with outward radial gradients will be less than the heat flux within the semi-

infinite solid when the same surface heat flux is present in both in accordance

with Equation (123). Then, the temperature changes which result from the same

time history of surface heat flux will be less since smaller temperature changes

are required to establish the heat flux through the cylinder. With inward radial

gradients, the area of the lanes decreases, so the temperature changes will be

greater, and the series solution overestimates.

Figures 67, 68, 69 and 70 in Appendix C.2 show the results for the limiting

case for heat flux out, the intermediate case for heat flux out, the limiting case for

heat flux in and the intermediate case for heat flux in as the parameter LIRCYL

varies using a value of 1.0 for dBiFRo, T instead. The results using a larger value

for dBiFRONT show the very same trends but with slightly less percent differences.

It must be noted, however, that the dimensional error in the series solution is still

greater for the larger value of dBiROT since the percent difference is normalized

with the value of dBiFRONT in the denominator. The smaller percent difference

when using the larger value for dBiFRONT may be misleading also because of the

way the results are displayed. It is likely that the fractional amount of the true

surface heat flux by which the series solution overestimates or underestimates stays

fairly constant when the value for dBiFRoNT varies. The way to show this would be

to evaluate a new percent difference using the finite-difference estimate for surface

heat flux as the normalizing factor. The non-dimensional temperatures at the

front surface in the disturbance problem will tend to increase when using larger

values for dBiFRONTI so non-dimensional surface heat flux values decrease. If, in

fact, the series solution errs by a constant fractional amount of the finite-difference

estimate when the value for dBiFRONT changes, then the percent difference is less

for larger values of dBi,,rO only because the finite-difference estimates for surface

heat fluxes are smaller.
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Figure 35. Results for the Limiting Case for Heat Flux In Across the Outer-
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ing dBirRONT = .1
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Figure 36. Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as RDIsK/R .- L Varies Us-

ing dBiRON r = .1
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The geometry parameter RD,.K/RCYL has little impact on the results. Fig-

ures 33, 34, 35 and 36 show the results as the parameter RDISK/RcYL varies using

a value of 0.1 for dBiFRONT . Varying R DSK/RcyL in the absence of heat generation

merely changes the area over which the surface temperature is averaged for use in

the series solution. In all cases except the intermediate case for heat flux out, a

larger value for RD1sK/RcL produces slightly more error in the series solution. This

trend makes sense since the heat transfer should be more one-dimensional closer to

the centerline of the cylinder and since the radial derivative is zero directly at the

centerline. The impact of varying the geometry parameter RDIsKIRcyL increases

ibr larger values of LIRYL which also makes sense since the radial derivatives are

greater with larger values of L/RcyL. However, it should be noted that the change

in the percent difference as the parameter LIRCYL varies in most cases is less than

the expected accuracy in the model, so the results are inconclusive. The trends

could be trends in the error equation of the finite-difference model rather than

actual trends in the results. Figures 71, 72, 73 and 74 in Appendix C.2 show the

results as RDISK/RcYL varies using a value of 1.0 for dBiFRQNT . These results are

very similar.

4.3 Non-Adiabatic Cases with Heat Generation and Preheating

The non-adiabatic cases with heat generation and preheating investigate the

effect on the series solution when both causes of two-dimensional heat transfer

are present. These runs are a subset of the runs in the previous section to which

preheating and subsequent heat generation are added.

Both the preheating and the disturbance problems are used for all runs. It

should be noted that the limiting cases for heat flux out and in are identical in the

preheating problem since the outer-radial boundary condition is the same in both

as is seen by Equations 27 and 28 in Section 2.2. The limiting case for heat flux in

models the condition where the thermal conductivity in the surrounding material
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is infinite and the temperature of the surrounding material is the temperature of

the fluid at the front surface. In the preheating problem, the temperature of the

fluid at the front surface is the initial temperature.

The tolerance used in the convergence criterion for the preheating problem is

0.1 for all runs. All runs use a value of 1/8 for the geometry parameter RDISK/RcYL.

Each of the four cases is run with a few values for the geometry parameter LIRcyL.

Values of 0.0, 0.05 and 0.2 for the parameter -y are run with each of the values for

LIRcL. All runs are duplicated using values of 10.0 and 100.0 for the parameter

0.

Figures 37, 38, 39 and 40 show the results for the limiting case for heat flux

out, the intermediate case for heat flux out, the limiting case for heat flux in and

the intermediate case for heat flux in, respectively, using a value of 10.0 for fl.

Figures 75, 76, 77 and 78 in Appendix C.3 show the results for the limiting case

for heat flux out, the intermediate case for heat flux out, the limiting case for heat

flux in and the intermediate case for heat flux in, respectively, using a value of 100.0

for fl. As in the adiabatic cases, the preheating and subsequent heat generation

has no impact on the results.
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Figure 37. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating Using [3 =

10.0
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Figure 38. Results for the Intermediate Case for Heat Flux Out Across the Outer-

Radial Boundary with Heat Generation and Preheating Using ,3 -

10.0
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Figure 39. Results for the Limiting Case for Heat Flux In Across the Outer-Radial
Boundary with Heat Generation and Preheating Using/3 = 10.0
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Figure 40, Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary with Heat Generation and Preheating Using ~
10.0
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0 V. Conclusions and Recommendations

This thesis numerically investigates the accuracy of the one-dimensional series

solution in determining the external surface heat flux actually present at the film

in thin-film heat transfer gages. The heat transfer problem is simplified to two

dimensions. From an overall point of view, the two possible causes for error in

the series solution are the electrical heat generation in the thin-film sensor and the

radial heat transfer induced by non-adiabatic conditions at the boundary of the

gage.

The results show that the electrical heat generation should not cause errors

as long as the instrumentation is turned on and the transients from the electrical

heat generation are allowed to settle down prior to the test. It should not take

long for the transients to settle down sufficiently to keep the error small. In tests

using an adiabatic condition at the boundary of the gage, a non-dimensional time

of 0.118, which is approximately twice as long as the time it takes the leading

edge of a thermal disturbance to travel through the gage, was sufficient. The

transients should settle down even quicker with non-adiabatic conditions since the

temperature changes will be less.

The radial heat transfer induced from non-adiabatic conditions at the bound-

ary of the gage can cause very significant errors in the results for long times. Be-

cause of limitations on the model, this investigation only looks at non-dimensional

times greater than 0.01. The two most significant non-dimensional parameters

which influence the error caused by the non-adiabatic conditions are the ratio of

the thermal diffusivities in the insulating and cylinder materials and the geome-

try parameter LIRYL. Outward radial gradients caused by using an insulating

material with a smaller thermal diffusivity than that of the cylinder material will

cause the measured heat flux to be less than the actual, external surface heat flux.

Inward radial gradients caused by using an insulating material with a greater ther-0
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mal diffusivity will cause the measured heat flux to be greater than the actual. In

either case, a larger value of the geometry parameter LIRyL increases the error.

Limiting cases which bound the effects caused by non-adiabatic conditions

were investigated. In the limiting case for outward radial heat flux, keeping the

geometry parameter LIRYL less than 1.0 limited the error in the measurement

for heat flux to less than 2 percent of the theoretically maximum, external surface

heat flux for non-dimensional times up to 0.07. In the limiting case for inward

radial heat flux, keeping the geometry parameter LIRyL less than 0.6 limited the

error to 5 percent. In an intermediate case for outward radial heat flux, which

used a value of 1/6 for the ratio of the thermal diffusivities of the surrounding

material and the cylinder material, keeping the geometry parameter LIRCYL less

than 2.0 limited the error to 6 percent. Finally, in an intermediate case for inward

radial heat flux, which used a ratio of 6.0 for the thermal diffusivities, keeping the

geometry parameter LiRyL less than 1.0 limited the error to 2 percent.

Using values of LIRcL larger than these can produce large errors in the

results. In the limiting case for outward radial heat flux, using a value of 2.0 for

the geometry parameter L/RYL and 0.1 for the Biot number at the front surface

produced a steadily increasing error which reached 30 percent by non-dimensional

time of 0.07. In the limiting case for inward radial heat flux, using a value of

0.8 for the geometry parameter L/RCYL and 0.1 for the Biot number at the front

surface produced an error which reached 85 percent. In the intermediate case for

outward radial heat flux, using a value of 4.0 for LIRL and 0.1 for the Biot

number produced an error which reached 13 percent. Finally, in the intermediate

case for inward radial heat flux, using a value of 2.0 for LIRcYL and 0.1 for the Biot

number produced an error which reached 34 percent. Since the error increases with

time, one can attain better accuracy with larger values of the geometry parameter

LIRYL and greater differences in the thermal diffusivities if one uses shorter test

times.
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The error caused by a non-adiabatic condition at the boundary of the gage

0 can be significant. One can try to limit this error in three ways. First, one can use

as good an insulating material as possible in mounting the gage. Although this

technique promises to improve the accuracy in the series solution, it may cause the

heat flux at the gage to be very different from the heat flux that would occur in the

absence of the gage because the temperature changes due to the electrical heating

will be greater. Secondly, one could try to match properties between the cylinder

material and the insulating material to limit the temperature difference across the

boundary of the cylinder. This technique should improve the accuracy of the series

solution while minimizing the deleterious effect of the electrical heating in the thin

film. Thirdly, one can use a gage with a smaller geometry ratio LIRyL.

The results from this investigation must be weighed in view of the accuracy

of the model as estimated from the transient check cases for one-dimensional heat

transfer in the axial direction. As a conservative estimate, the model should be

accurate to within a percent difference of 4.0 for non-dimensional times greater

O than 0.01 where the percent difference is the percent of the theoretically maximum,

external surface heat flux by which the series solution estimate differs from the

actual heat flux in the finite-difference model, i.e. (q+ 00.+(SER FD)X100.00

0
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Appendix A. Nodal Equations

A.1 Single-Material Problem with Fully-Insulated, Outer-Radial Boundary

Condition

Preheating Problem:

Note 1: Nodal Equations (a)-(i) apply to the corresponding positions in

Figure 4.

Note 2: For nodes on the front surface of the cylinder, Equations (a)-(c), the

last term in the nodal finite-difference equation is included only if the node lies

within the heated disk.

(a)

o+j+l [L 12 At 0+j 2 At+ 0+j

0,0= 4 ]2 (Ar+)2 1,o+ 2 (AZ+ 0 1 +)

+ 1- _ At+ 2 (Az+)2

RCL(ArT) Az______

At +
+ 2PBiFRONT Az+

(b)

r++ L]2  At+ +
.. o = L] (1 - 1/(2n)) At+)0+ .

n,O RcYLJ (Ar )2 n-1,0

L ]2 At + At +

1-2J~I~f) (A+ 2 n+1,O FRONT) + n,1

RcYLJ (Ar+) 2 
-,+(AZ+)2 B Az,

+2 Bi At+

PFRONT Az +
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Disturbance Problem:

Note 1: Nodal Equations (a)-(i) apply to the corresponding positions in

Figure 4.

Note 2: For nodes on the front surface of the cylinder, Equations (a)-(c),

the last term in the nodal finite-difference equation, i.e. the term including the

parameter y, is included only if the node lies within the heated disk.

(a)

o+r+[ L ] 2 + At+_ -
0.0 4 [ , + 2A+ 0.'

RCY -Ar+ )2 ' (Az+) ) -

[ L ] 2 t +  At+ At+
+1-4 W (A+)2 (,NZ) -) 2dBiFRoNTw EZV o.o
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+ d~ro~ z +  A ~~orz+ )

(b)
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A.2 Two-Material Problem with Fully-Insulated, Outer-Radial Boundary

Condition

Preheating Problem:

Note 1: Nodal Equations (a)-(o) apply to the corresponding positions in

Figure 5.

Note 2: For nodes on the front surface of the cylinder, Equations (a)-(c), the

last term in the nodal finite-difference equation is included only if the node lies

within the heated disk.
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Disturbance Problem:

Note 1: Nodal Equations (a)-(o) apply to the coxrresponding positions in

Figure 5.

Note 2: For nodes on the front surface of the cylinder, Equations (a)-(c),

the last term in the nodal finite-difference equation, i.e. the term including the

parameter y, is included only if the node lies within the heated disk.
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*Appendix B. Graphs of Results from the Check Cases

B.1 Steady-State Check Cases for Heat Transfer in the Axial Direction

B.I.1 Preheating Problems
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B.1.* Disturbance Problents
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B., Steady-State Check Cases for Heat Trawfer in the Radial Direction

Case numbers refer to the cases given in Tables 2 and 3. See Figure 13 in

Section 3.2 for the results from Case 2 using the single-material problem.

B.2.1 Single-Material Problems

140



0

Single-Material Problem: 0+  vs. r+

1.20

1.00-

0.80

O 0.60

0.40 -Case1:
- Boundary Conditions

d,.+.o = 0

0.20 0+(r + = 1) = i

Analytical Solution Analytical Solution
V m(r+ )  - - ---- Finite-Difference
e )=Estimate

0 .0 0 I I I I I ' I I I I I II I I I I I I I I I I I I I I I i 1 I I T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r+

Figure 48. Case 1 for Steady State Heat Transfer in the Radial Direction Using
the Single-Material Problem
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1 .20 SIngle-Material Problem,V.

Analytical Solution

Finite-Difference
Estimate

1.00

0.80 .

08+j 0.60

0 Case 3:
0.40 Boundary Conditions

0+(r+ < .15) = 1 N

9+(r+ =1)=O0

0.20 Analytical Solution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 06.9 1.0

Figure 49. Case 3 for Steady State Heat Transfer in the Radial Direction Using
the Single-IN-iaterial Problem
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1.20 -Single-Material 
Problem: 0,+ vs. r

Case 4:

Boundary Conditions

1.00 00r 1

Analytical Solution

0.80 0+ (+){I0z+ 0~ .1< r <1

e~0.60

0.40

0.20

Analytical Solution
Finite-Difference
Estimate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 30. Case 4 for Steady State Heat Transfer in the Radial Direction Using
the Single-Material Problem
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B.I.2 Two-Material Problem,
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0

1.20 Two-Material Problem: 0+  vs. r+

1.200

1.00-- - ---

0.80

o,+ 0.60

0.40 Case 1:

Boundary Conditions

0.20 dr:)To =0

0+(r + = 2) = 1

Analytical Solution Analytical Solution
Finite-Difference

s0+e(r+ ) - 1 Estimate

0 .0 0 1 1 I I I I I I I I I I I I I I I I I , i

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r
+

Figure 51. Case 1 for Steady State Heat Transfer in the Radial Direction Using
the Two-Material Problem
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Two-Material Problem: 0+  vs. r+

1.20

1.00

0.80

0+r,0.60

0.40 Case 2:

Boundary Conditions

+(r + < .3)= 1

0.20 =do+ 0 =

Analytical Solution Analytical Solution

0 (r+) -1Finite-Difference
O+( + ) - Estimate

0 .0 0 7 - - I I I I I I I I I I I I I I I I I I I I I I I i , , I i I , I i , l i

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r
+

Figure 52. Case 2 for Steady State Heat Transfer in the Radial Direction Using
the Two-Material Problem

146



Two-Material Problem: 0+  vs. r+

1.20

Analytical Solution

Finite-Oifference
Estimate

1.00

0.80

O , 0.60

Case 3:

0.40 Boundary Conditions

0+(r + < . 3) = 1  \

O+(r + = 2)= 0

0.20 Analytical Solution

So< r < .30+ (r+
+) +L(I n( ) "- + < 2

.3 .3 <r <

0.00 1 1 1 i 1 ,r 11 I i - ,1ii

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r*

Figure 53. Case 3 for Steady State Heat Transfer in the Radial Direction Using

the Two-Material Problem
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1.20 Two-Material Problem: O+  vs. r+

Case 4:

Boundary Conditions

1.00 0+(r+ <.3) 0
+(r+ = 2) =

Analytical Solution

0.80 - o(r+) 0 + 0 or+ .3
[ T()-r(TT .3 <r+ <2 .,

* /
0+  0.60 /

0.40 /

0.20 /

Analytical Solution

Finite-Difference
Estimate0 .0 0 , ,1 1' '1 1, 1,, , , ,1, , , , ,1, , 1, ,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r,+

Figure 54. Case 4 for Steady State Heat Transfer in the Radial Direction Using
the Two-Material Problem
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B.S TtanJient Check Cases

B.S.1 The Semi-Infinite Solid with Con.tant Surface Heat Flux
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Finite-Difference Model

0.0Values for VS. t+.

1The Semi-infinite Solid with Constant Surface Heat Flux

0.30

++0.20

0.10

Analytical Values
t*= .0005

- - - t=.004

0.00 0.02 0.04 0.06 0.08

Figure 55. Finite-Difference M.,odel Values for 0,+ vs. t+ for the Semi-Infinite Solid
with Constant Surface Heat Flux
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Series Estimate for q,++
(Using Analytical Values for 0+ +) vs. t+

1.50 4 The Semi-Infinite Solid with Constant Surface Heat Flux

1.30 2

1.10 \

4

• 0.90* -J

0.70
Analytical 

Values

t = .0005
-t = .001

- - t4 = .004

0 .5 0 - r,, , , I I I I I I I I I I

0.00 0.02 0.04 0.06 0.08

t+

Figure 56. Series Solution Estimates for q+ (Using Analytical Values for 0+ ) vs.
t+ for the Semi-Infinite Solid with Constant Surface Heat Flux
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Series Estimate for q++
(Using the Finite-Difference Estimates for 0+ + ) vs. t+

1 .50 The Semi-Infinite Solid with Constant Surface Heat Flux

1.30 --

1.10

q.+ / .-..

0.90

0.70
Analytical Values

t" = .0005
t+ = .001

0.50 -- t = .004
0.00 002 0.04 0.06 0.08

t+

Figure 57. Series Solution Estimates for q+ (Using the Finite-Difference Model
Values for G+ ) vs. t+ for the Semi-Infinite Solid with Constant Surface

Heat Flux
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B.S.S The Plane Wall with Convection
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Finite-Difference Model
Values for 0.+ VS.

0.50 -The Plane Wagl with Convection

0.40

0.30

* 0.20

0.10 Analytical Values
- - -- - - - t* = .0005
- - - -t+ =.001
- -t - t.004

0.00.02 0.04 0.06 0.08

j+.

Figure 5S. Finite- Difference Mlodel Values for 0+ vs. t+ for the Plane W,1all with
Convection
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Finite-Difference Estimate
for q+ vs. t+

1 .00 The Plane Wall with Convection

0.90

0.80

q+

0.70

0.60
Analytical Values

t = .0005
t = .001
t + = .004

0.50 1 - -i-r I I I I i I I Ir - I I I

0.00 0.02 0.04 0.06 0.08

t+

Figure 59. Finite-Difference Estimates for q+ vs. t + for the Plane WVall with Con-

vection
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Series Estimate for q.+

1.0(Using Analytical Values for 0,+) VS. t

150-The Pians Woo with Convection

1.30

1.10

q.+\ Analytical Values
t*= .0005

-t = - t.004

0.70

0.50 1 M 1T- I I I I I I I 7---- =

0.00 0.02 0.04 0.06 0.08

Fig ure 60. Series Solution Estimates for q,' (Using Analytical Values for 0+) vs.
t+ for the Plane W~all with Convection
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Series Estimate for q:
(Using the Finite- Difference Estimates for VS.) t.

1.50 The Pians Wall with Convection

1.30

1.10

Analytical Values

- -t- = .0040 0.90

0.70

0 .5 0 - 1 7 1 -I I I I I I I I I I I I

0.00 0.02 0.04' 0.06 0.08

Figure 61. Series Solution Estimates for q+ (Using the Finite-Difference Model

Values for 0+) vs. t+ for the Plane W~all with Convection
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Comparing q.+ VS.
1 .00 -The Pians Wail with Convection

at+ =.0005
0.90 Analytical Values

* * * ' Finite-Difference Estimates

+ Series Estimates
1 -+ + (Using the Finite-Diffetence

0.80 Estimates for G~

0.70

0.60

0.50 1 1il 111111111 1i rii rii

0.00 0.02 0.04 0.06 0.08

Figure 62. Comparing the Finite- Difference Estimates. Series Solution Estimates
(Using the Finite-Difference Model Values for 0 ' ) and Analytical Val-
ues for q+ vs. t+ for the Plane \Vlall with Convection
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Appendix C. Other Graphs of Results

C.1 Results for the Adiabatic Caes Using ,6 = 100.0
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(q+,,, - q+°.) x 100.00 v. t +

1 0.00 -Heat Generation and Preheating

6 100.0

8.00

6.00

-' 4.00
x

=, - "f = 0.5

Cr -f = 0.4

it 2.00 = 0.3
01-y =0.2

-Y= 0.1

-0.00 • =
-i

5 RoISKIRcy 1/8

-2.00 LIRC,,L = 1.0

~ tolerance = .1

-4.00 ---j I I i i

0.00 0.02 0.04 0.06 0.08

i+

Figure 63. Results with Heat Generation and Preheating as \aries Using 3

100.0
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25.00(q,+, - q+.D) x 100.00 VS. t

25.00 -Heat Generation and Preheating

=100.0

20.00RD15K/RcYL =1/8
L2R0.001.

tolerance = .1

- --- - - tolerance = .05
15.00 I-- tolerance = .5

- - No Preheating
CD (tolerance- very large)

x

10.00 ~- J 0

5.00 
0.

= 0.0

0.00 /.0

-5.00 iT7T r -r- -r-r T-1 IIIIIII

0.00 0.02 0.04 0.06 0.08

C,.

Figure 64. Results with Heat Generation and Preheating as the Tolerance Varies

Using 03 = 100.0
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(q' - q+x 100.00 VS. j

5.00 -Heat Generation and Preheating

6 100.0

4.00

3.00

2 2.00
x

+. =0.2

0.0
-0.00 RD,sKIRcYL 1/8 y 0.2

tolerance =.

-1.00 IR CYL~ 1.0

- -- - - - UR CL =0.2

L/RC = 5.0
-2.00 -- 1 1 1 1 I I IIIIIIII I III

0.00 0.02 0.04 0.06 0.08

Figure 65. Results with Heat Generation and Preheating as LIRCYL Varies Using
=100.0

162



"A q,.) x 100.00 vs +

5.00 Hest Generation and Preheating

6 100.0

4.00

0.0

2.0

x

+v 0.2

-0.00 L L/R~j = 1.0
/ tolerance =.1

-1.00 1 DISK/RCYL1/

- - RDiSK/R CYL = 1/6

0.00 0.02 0.04 0.06 0.08

Figure 66. Results with Heat Generation and Preheating as RD57RCYL 'Varies
Using A3100.0
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C-2 Results for the Non-Adiabatic Case, with No Heat Generation or Preheating
Using dBiFRONT = 1.0
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-si q") x 100.00 vs.
40.00 -Limiting Case for Host Flow Out

20.00=1.

0.00

LIY -20.00

-4

-40.00

-60.002.

-80.00 -=

RDISK/RCIL =1/8

- 10 0 .0 0 - I I I I 1- 7 - 1 1 1 1 1 1 1 -!- 1- I M I I I I I

0.00 0.032 0.04 0 .06 0.08

Figure 67. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with No Heat Generation as LIRY Varies Using
dB1 FRONT = 1.0
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(q 4  
- .0 vs. t

S&R qD) X 100'0
10.00 lntormcilate Case for Host Flow Out

-j~j,0.v = 1.0
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0.00
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-15.00

-20.00 -'0

RDtSK /RcYL =1/8

-25.00 1 r- IT- --
0.00 0.02 0.04 0.06 0.08

V..

Figure 68. Results for the Intermediate Case for Heat Flux Out Across the Outer-
Radial L -undary with No Heat Generation as LIRCYL Varies Using0dBiFRONT = 1.0
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(q - +,. x 100.00 VS. t

1 00.00 U.mItlng Case for Heat Flow In

80.00NT 1- LIRCYL = 1.2

60.00

40.00

+1.

20.00

0.00L/L .

-20.00

RDISK /RcyL =1/8

0.00 0.02 0.04 0.06 0.08

Figure 69. Resuilts for the Limiting Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as LIR CYL Varies Using
dBi FRONT. = 1.0
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(q,.-q 0 X 10.00 Vs. t
100.00 Intermediate Case for Heat Flow In

=~ PAN 1.0
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40.00 5. LIRcYL 4.0
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Figure 70. Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Bounday with No Heat Generation as L/RC YL Varies Using
dBZ FRONT = 1.0
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40.0 - Uitin Cas -q+.,,) x 100.00 .40.00 -- qS) O0O vs. t +

imiting Case for Heat Flow Out

dBiFAON7 1.0
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0.00 0.02 0.04 0.06 0.08
t +

Figure 71. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with No Heat Generation as RDiSK/ RcyL Varies Us-
ing dBiFRONT = 1.0
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10.00 -Intermediate Case for Heat Flow Out
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Figure 72. Results for the Intermediate Case for Heat Flux Out Across the Outer-

Radial Boundary with No Heat Generation as RDISK /RcYL Varies Us-
ing dBiRoNT = 1.0
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(q+,- q,+,.) x 100.00 VS t
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Figure 73. Results for the Limiting Case for Heat Flux In Across the Outer-
Radial Boundary with No Heat Generation as RDISKIRcyL Varies Us-

ing dBI FRONT = 1.0
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Figure 74. Results for the Intermediate Case for Heat Flux In Across the Outer-
Radial Boundary wvith No Heat Generation as RDIsKI/RcYL Varies Us-
ing dBi FRONT =1.0
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C.3 Result.9 for th~e Non-A diabatic Cases with Heat Generation and Preheating

S Using,9  100.0
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Figure 75. Results for the Limiting Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating Using 3 =

100.0
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Figure 76. Results for the Intermediate Case for Heat Flux Out Across the Outer-
Radial Boundary with Heat Generation and Preheating Using /3 =
100.0
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Figure 77. Results for the Limiting Case for Heat Flux In Across the Outer-Radial
Boundary with Heat Generation ,and Preheating Using/j = 100.0
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Appendix D. Example Programs

D. I The Finite-Difference Model for the Single-Material Problem with

Fully.Insulated, Outer-Radial Boundary Condition

PROGRAM GAGE2N
C ***************************************************

C * 2LT JOSEPH A. BONAFEDE, GA-88M ,
C * FALL 1987 ,

C *•
C * ADVISOR: DR. JAMES E. HITCHCOCK ,
C ***************************************************

C
C GLOSSARY OF MAIN VARIABLES:

C THAOLD - ARRAY STORING NON-DIMENSIONAL TEMPERATURE VALUES FOR

C ALL GRID POINTS. USE THAOLD TO STORE INITIAL VALUES

C AND TO STORE VALUES DURING PREVIOS TIME STEP.

C USED INTERNALLY
C THANEW - ARRAY TO STORE NEW NON-DIMENSIONAL TEMPERATURE VALUES

C CALCULATED DURING A NEW TIME STEP.
C USED INTERNALLY
C IMAX - DETERMINES UMBER OF NODES IN THE RADIAL DIRECTION. NUMBER
- OF NODES IN THE RADIAL DIRECTION EQUALS (IMAX + 1).

INPUT PARAMETER

KMAX - DETERMINES THE NUMBER OF NODES IN THE Z DIRECTION (FRONT TO

BACK OF GAGE). NUMBER OF NODES IN THE Z DIRECTION EQUALS

-(KMAX + 1).
C INPUT PARAMETER

C IGEN - ARRAY WHICH STORES INFORMATION ABOUT TOP SURFACE NODES.

C STORES VALUE OF 1.0 FOR A NODE IF THE NODE IS IN THE HEAT

C GENERATING REGION AND A VALUE OF 0.0 FOR A NODE IF IT IS NOT.

C USED INTERNALLY
C IGENMX - LARGEST RADIAL NODE INCLUDED IN THE HEAT GENERATING REGION.

C INPUT PARAMETER
C DELT - TIME STEP (NON-DIMENSIONAL TIME).
C INPUT PARAMETER

C MAXT - MAXIMUM NUMBER OF TIME STEPS ALLOWED.
C INPUT PARAMETER

C TDIST - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE
C PROBLEM (AS LONG AS TDIST .LE. MAXT).

C INPUT PARAMETER
C TIMEl - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE

C PROBLEM IN THE PROGRAM.
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C TIMEImO a> EXTERNAL DISTURBANCE PROBLEM ALWAYS

c 2c.TIMElc.MAIT => SWITCH FROM NON-DISTURBANCE PROBLEM

C TO DISTURBANCE PROBLEM AT NVTIME1

C TIMElMAXT+I a> NON-DISTURBANCE PROBLEM ALWAYS

C USED INTERNALLY
C COUNT - NUMBER OF TIME STEPS INTO THE DISTURBANCE PROBLEM (I.E.
C THE NUMBER OF TIME STEPS ALREADY RUN FOR THE DISTURBANCE

C PROBLEM).

C USED INTERNALLY
C MAXTHA - LARGEST ABSOLUTE VALUE FOR NEW NON-DIMENSIONAL TEMPERATURE

C IN THE TIME STEP (I.E. LARGEST VALUE STORED IT THANEW

C ARRAY).

C USED INTERNALLY

C CHNG - ABSOLUTE CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH

C NODE DURING THE LAST TIME STEP.

C USED INTERNALLY

C VISCHNG - CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH NODE DURING

C THE LAST TIME STEP AS A FRACTION OF THE LARGEST VALUE FOR

C NON-DIMENSIONAL TEMPERATURE IN THAT TIME STEP (I.E.

C VISCHNG u CHNG/MAXTHA ).

C USED INTERNALLY
C MAXCH - MAXIMUM VALUE FOR VISCHNG DURING THE TIME STEP (AS LONG AS. C THE VALUE FOR MAXTHA FOR THE TIME STEP IS NOT NEAR ZERO. IF

C THE VALUE FOR MAXTHA IS NEAR ZERO. USE ABSOLUTE CHANGE RATHER

C THAN VISUAL CHANGE AS THE COVERGENCE CRITERIA.)

C USED INTERNALLY

C TOL - VALUE TO USE IN DETERMINING CONVERGENCE (STEADY STATE PROBLEMS

C ONLY). IF RATE OF VISUAL CHANGE IS LESS THAN TOL, THEN ASSUME

C THAT THE PROGRAM HAS CONVERGED SUFFICIENTLY.
C (I.E. MAXCH/DELT < TOL => CONVERGENCE BECAUSE RATE OF CHANGE
C IS SUFFICIENTLY SMALL )

C INPUT PARAMETER

C LRRAT - THE GEOMETRY RATIO (LENGTH OF GAGE)/(RADIUS OF GAGE).

C INPUT PARAMETER

C GBIOT - THE TOP SURFACE B1OT NUMBER BEFORE THE DISTURBANCE.

C INPUT PARAMETER

C GBIOTB - THE BOTTOM SURFACE BIOT NUMBER BEFORE THE DISTRUBANCE.

C INPUT PARAMETER
C DBIOT - THE TOP SURFACE BIOT NUMBER AFTER THE DISTRUBANCE.

C INPUT PARAMETER

C DBIOTB - THE BOTTOM SURFACE BIOT NUMBER AFTER THE DISTURBANCE.

C INPUT PARAMETER

C B1OT - TOP SURFACE BIOT NUMBER AT THE PARTICULAR TIME STEP.

C USED INTERNALLY
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C BIOTB - BOTTOM SURFACE BIOT NUMBER AT THE PARTICULAR TIME STEP.

C USED INTERNALLY
C GENRAT - THE "GENERATION RATIO" (QGEN/DBIOT)/(TFFINAL - TINIT).

C INPUT PARAMETER

C BFRAT - THE RATIO (TFBACK - TINIT)/(TFFRONT - TINIT) WHERE TFBACK

C AND TFFRONT ARE THE FLUID TEMPERATURES DURING THE

C DISTURBANCE PROBLEM.

C INPUT PARAMETER
C DGBIRAT - THE RATIO (DBIOT)/(GBIOT).

C USED INTERNALLY

C DELR - SPACIAL STEP IN THE NON-DIMENSIONAL RADIAL DIRECTION.

C USED INTERNALLY

C DELZ - SPACIAL STEP IN THE NON-DIMENSIONAL Z DIRECTION.

C USED INTERNALLY

C I - INDEX VARIABLE FOR NON-DIMENSIONAL RADIAL DIRECTION.

C USED INTERNALLY

C K - INDEX VARIABLE FOR NON-DIMENSIONAL Z DIRECTION.

C USED INTERNALLY

C N - INDEX VARIABLE FOR TIME STEPS.

USED INTERNALLY

-7 RUN"UM - THE RUN NUMBER (USED FOR BOOK KEEPING PURPOSES).

INPUT VARIABLE

LAMRI,LAMZl,LAMZ2,Pl - COMMON PRODUCT TERMS IN THE FINITE

ELEMENT EQUATIONS.

USED INTERNALLY

DECLARE VARIABLES:

IMPLICIT CHARACTER(A-Z)

REAL THAOLD(0:20,O:20),THANEW(0:20,O:20)
REAL IGEN(O:20)

REAL DELT
INTEGER MAXT,TDIST,TIME1 ,COUNT

REAL MAXTHA,CHNGVISCHNG ,MAXCH ,TOL
INTEGER IMAX, KMAX, IGENMX
REAL LRRAT

REAL BIOT,BIOTB.GBIOTGBIOTBDBIOTDBIOTB

REAL DGBIRATGENRAT ,BFRAT

REAL DELR,DELZ,LAMR1,LAMZ1,LAMZ2,P1

REAL A1,A2.A3,A.B,C1,C,D

INTEGER RUNNUM
INTEGER I,K,N

INTEGER I,Y

C

C ------------------------------------------------------------------
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C OPEN INPUT/OUTPUT FILES.

OPEN(UNIT- 1,FILEu'G2INP' .STATUS='OLD')

OPEN (UNIT-2. FILE-' G20UT .,STATUS-' NEW')

OPEN(UNIT=3,FILE"'INIr', STATUS- 'OLD')
OPEN (UNIT= 10, FILE ' DISKT' STATUSaINEI')

REWIND(UNIT•1)
REWIND (UNIT•3)

C
C --------------------------------------------------------------
C READ INPUT PARAMETERS.
C

READ(1 ,*)

READ(1.*) DELT

READ(I,*) MAXT

READ(1,*) TDIST

READ(I,*) TOL

C
READ(1,*) IMAX

READ(I,*) KMAX

READ(1,*) IGENMX

READ(1,*) LRRAT

C

READ(I,*) GBIOT
READ(1,*) GBIOTB
READ(1,*) DBIOT
READ(1,*) DBIOT
READ(1,*) GENRAT
READ(,.*) BFAT
READ(I,*) DGBIRAT
READ(1,*) RUNNUN

C
C ---------------------------------------------------------------
C INITIALIZE PARAMETER NEEDED IN PRINTING OUT HEADER ( USING HEADER
C INSTEAD OF JUST ECHOING THE INPUT ).
C

IF (TDIST .LE. I ) THEN
TIMEa 0

ELSEIF (TDIST .GT. MAXT) THEN

TIMEI a MAXT + 1
ELSE

TIME1 a TDIST
ENDIF

C
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C

C PRINT HEADER.
C

WRITE(2,*)'RUN NUMBER ',RUNNUM

WRITE(2,*) 'INPUT VALUES:'

WRITE(2,*)
WRITE(2,*)'** GEOMETRY OF THE GAGE AND FINITE ELEMENT MESH **'

WRITE(2.*)

WRITE(2,*)' GRID POINTS IN R-DIRECTION : 0 - ',IMAX
WRITE(R,*)' GRID POINTS IN Z-DIRECTION : 0 - ',XMAX

IF (IGENMI .LT. 0) THEN
WRITE(2,*)' R-DIRECTION GRID POINTS INCLUDED'

WRITE(2,*)' IN THE HEAT GENERATING DISK NONE'

ELSEIF (IGENMX .EQ. 0) THEN
WRITE(2,*)' R-DIRECTION GRID POINT INCLUDED'

WRITE(2,*)' IN THE HEAT GENERATING DISK : 0'
ELSE

WRITE(2,*)' R-DIRECTION GRID POINTS INCLUDED'

WRITE(2,*)' IN THE HEAT GENERATING DISK 0 - ',IGENMX

ENDIF
WRITE(2,*)

WRITE(R,*)' RATIO OF (LENGTH OF GAGE)/(RADIUS OF GAGE) = ',LRRAT
WRITE(2,*)
WRITE(2*)

WRITE(2,*) **TIME STEP AND LIMITS INCLUDING EXTERNAL PARAMETERS**'

WRITE(2,*)

WRITE(2,*)' DELTA T a ',DELT
WRITE(2,*)
WRITE(2,*)' MAXIMUM NUMBER OF TIME STEPS a ',MAXT

WRITE(2,*)' TOLERANCE FOR CONVERGENCE w 'ITOL

WRITE(2,*)

IF (TIMEI .EQ. 2) THEN
WRITE(2,*)' TIME STEP ASSIGNED TO THE "START UP"'
WRITE(2,*)' PROBLEM ( NO EXTERNAL DISTURBANCE ) : 1'
WRITE(2,*)' BIOT NUMBER AT THE TOP SURFACE a ',GBIOT
WRITE(2*)' BIOT NUMBER AT THE BOTTOM SURFACE = ',GBIOTB

ENDIF

IF (TIME1 .GT. 2) THEN
WRITE(2,*)' TIME STEPS ASSIGNED TO THE "START UP"'
WRITE(2,*)' PROBLEM ( NO EXTERNAL DISTURBANCE ) 1 -

ft TIMEI-1
WRITE(2,*)' B1OT NUMBER AT THE TOP SURFACE = ',GBIOT
WRITE(2,*)' B1OT NUMBER AT THE BOTTOM SURFACE = ',GBIOTB

ENDIF

182



IF ((TIMEI .EQ. O)-AND.(NAXT .GT. 1)) THEN
WRITE(2.*)
WRITE(2 ,*)' TIME STEPS ASSIGNED TO THE PROBLEM'
WRITE(2*)' WITH AN EXTERNAL DISTURBANCE :I -' MAXT
WRITE(2.*)' BIOT NUMBER AT THE TOP SURFACE - ',DBIOT
WRITE(2.*)' BIOT NUMBER AT THE BOTTOM SURFACE a ',DBIOTB

WRITE(2.*)' RATIO (QGEN/DBIOT)/(TFFIMAL - TI) -',GENRAT
WRITE2.*)' RATIO (TFBACK - TI)/(TFFRONT - TI) a ',BFRAT

WRITE(2.*)' RATIO (DBIOT)/(GBIOT) a * GIA

ENDIF

IF ((TIMEl .EQ. O).AND.CM.AXT .EQ. 1)) THEN
WRITEC2,*)
WRITE(2,*)' TIME STEP ASSIGNED TO THE PROBLEM'

WRITE(2,*)' WITH AN EXTERNAL DISTURBANCE :1

WRITE(2,*)' BlOT NUMBER AT THE TOP SURFACE =',DBIOT

WRITE(2,*)' BlOT NUMBER AT THE BOTTOM SURFACE = ',DBIOTB

WRLITE(2.*)' RATIO (QGEN/DBIOT)((TFFINL TI) = ',GENRAT

WRITE(2.*)' RATIO (TFBACK - TI)/CTFFRONT -TI) = ',BFRAT

WRITE(2,*)' RATIO (DBIOT)/(GBIOT) =',DGBIRAT

ENDIF

IF ((TIMEl .GT. O).AND.(TIMEl .EQ. MAXT)) THEN

WRITE(2 ,*

WRITE(2,*)' TIME STEP ASSIGNED TO THE PROBLEM'

WRITE(2.*)' WITH AN EXTERNAL DISTURBANCE ',TIMEl

WRITE(2,*)' BlOT NUMBER AT THE TOP SURFACE z ',DBIOT

WRITE(2,*)' BlOT NUMBER AT THE BOTTOM SURFACE ='.DBIOTB

WRITE(2,*)' RATIO (QGEN/DBIOT)/(TFFINAL -TI) = ',GENRAT
WRITE(2.*)' RATIO (TFBACK - TI)/(TFFRONT -TI) = ',BFRAT

WRITE(2.*)' RATIO (DBIOT)/(GBIOT) = ',DGBIRAT

ENDIF

IF ((TIMEl .GT. O).AND.(TIMEl .LT. MAXT)) TPEN

WRITE(2,*)

WRITE(2,*)' TIME STEPS ASSIGNED TO THE PROBLEM'

WRITE(2,*)' WITH AN EXTERNAL DISTURBANCE
& TINEW, - l,MAXT
WRITE(2,*)' BIOT NUMBER AT THE TOP SURFACE * ,DBIOT
WRITE(2.*)' BIOT NUMBER AT THE BOTTOM SURFACE = 'IDBIOTB

WRITE(2*)' RATIO (QGEN/DBIOT)/(TFFINAL -TI) = ',GENRAT

WRITE(2,*)' RATIO (TFBACK - TI)/(TFFRONT -TI) = ',BFRAT

WRITE(2,*)' RATIO (DBIOT)/(GBIOT) = ',DGBIRAT

ENDIF
WRITE(2,*)

WRITE(2,*)

WRITE(2,*) 'RESULTS:'
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WRITE (2,*a'

C

C INITIALIZE ARRAYS AND OTHER PARAMETERS.

C

READ(3,*)

DO 100 K = OKMAX
DO 110 I a 0,IKAX

THANEW(I,K) w 0.

READ(3,5) THAOLD(I.K)

IF (TIME1 .EQ. 0) THAOLDCI,K) *THAOLD(I,K)*GENRAT*DGBIP.UT

110 CONTINUE
100 CONTINUE
C

DO 120 1 a OPIMAX

IF (I .LE. IGENMX) THEN
IGEN(I) a 1.

ELSE
IGENCI) = 0.

END IF

120 CONTINUE

C

DELR x I./FLOAT(IMAX)

DELZ a 1./FLOATCKMAX)

LAMRI a DELT/DELR**2
LAMZ1 = DELT/DELZ**2

LAMZ2 - DELT/DELZ

C
P1 = (FLOAT(IMAX) - .5)/(FLOAT(IMAX) -. 25)

C

C --------------------------------------------------------------
C *******************************

C --------------------------------------------------------------
C MAIN LOOP.

C

IF (TIMEI .EQ. 0) THEN

BlOT - BIOT

BIOTE z DBIOTB

ELSE
BIOT - GBIOT

BIOTB a GBIOTB

ENDIF

COUNIT - 0
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MAXCH a 99.99

C

DO 500 N a 1,MAXT

IF ((MAXCH/DELT) .GT. TOL) THEN

C -------------------------------------------------------------
C

C

C - - - - - - - - - - - - - - - - - - - - - - - - - -

c REDEFINE BIOT NUMBERS AND UPDATE THAOLD WHEN STARTING

C THE DISTURBANCE PROBLEM.

C
IF (N .EQ. TIMEl) THEN

BIOT =DBIOT

BIOTB DBIOTB;
DO 1000 I - 0,IMAX

DO 1010 K a OKMAX

THAOLD(I,K) - THAOLD(I,K)*GENRAT*DGBIRAT

1010 CONTINUE

1000 CONTINUE
ENDIF

C
C - - - - - - - - - - - - - - - - - - - - - - - -

C SOLVE FOR NEXT TIME STEP.*C
C

C FRONT OF GAGE

C

C

C

C (A)

C
A a 4.*(LRRAT**2)*LAMR1* THAOLD(1QO)

B a 2.*LAMZ1* THAOLD(0,1)

Cl a 1. - 4.*(LRRAT**2)*LAMR1 - 2.*LAMZI 2.*LAMZ2*BIOT

C - Cl* THAOLD(O 0)

IF (N .LT. TIMEI) THEN

D x 2.*LAMZ2*BIOT* IGENCO)

ELSE
D - 2.*LAMZ2*BIOT*(1. + IGEN(0)*GENRAT)

END IF

THANEW(0,O) = A + B + C 4 D

C

C (B)
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C
DO 800 1 * lINA-l

Al w 1. - ./(2.*FLOAT(I))
A2 a I. + l./(2.*FLOAT(I))
A3 a (LPRAT*.2)*LAMRI
A a A3*( Als THAOLD(I-lO) + A2* THAOLD(I+.,0))
B w 2.*LAMZl* THAOLD(I,l)
Cl a 1. - 2.*(LRRAT**2)*LAMtl - 2.*LAMZl - 2.*LAMZ2*BIOT
C a C1* THAOLD(I,0)
IF (N .LT. TINEl) THEN

D w 2.*LANZ2*BIOT* IGENMI
ELSE

D - 2.*LANZ2*BIOT*(l. + IGEN(I)*GENRAT)
END0IF
THANEW(I,O) - A + B + C + D

600 CONTINUE
C
C (C)
C

A = 2.*(LRRAT**2)*LAMR1*P1* THAOLD(IMAX-1,O)
B z 2.*LAMZI* THAOLD(IHAX,!9
Cl - 1. - 2.*(LRRPAT**2)*LAMR1*Pl - 2.*LANZl - 2.*LAMZ2*BIOT
c a cl* THAOLD(IMAX,0)
IF (N .LT. TIMEl) THEN

D w2.*LAMZ2*BIOT* IGENCIMAX)
ELSE

D = 2.*LAMZ2*BIOT*(l. + IGEN(IMAX)*GENRAT)
END IF
THANEW(IMAX0O) - A + B + C + D

C
C
C INTERIOR OF GAGE
C
C

DO 700 K -1,K14AX-1
C
C (D)
C

A - 4.*(TVARAT**2)*LAMRl* THAOLD(I,K)
B - LAMZ1*( THAOLD(0,K-l) + THA0LD(0,K.1))
Cl z 1. - 4.*(LRRAT**2)*LAMRl - 2.*LAMZ1
C a Cl* THAOLD(O,K)
THANEW(O,K) a A + B + C

C
C (E)
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C

DO 750 I 1,lINAX-l

Al a 1. I ./(2.*?LOAT(I))
A2 - 1. + l./(2.*FLOAT(I))

A3 a (LIRAT**2),LAHRI
A - A3*( At* THAOLDCI-1,K) +A2* THAOLD(I~lK))

B a LAMZI*( THAOLD(I,K-1) +THAOLD(I,JC.S))
Cl a I. - 2.*(LRRAT**2)*LAMR1 - 2.*LANZl
C a CiS THAOLD(IIC
THMIEW(I,K) - A + B + C

750 CONTINUE
C
C (F)
C

A - 2.*(LBJ'tT**2)*LAM~tl*PI* THAOLD(IMAX-1,K)

B - LAMZ1*( THAOLD(IKAX,K-l) + TIIAOLD(IMAX,K41))
C= 1. - 2.*(LRRAT**2)*LAMI*Pl - 2.*LAMZ1

C= CI* THAOLD(IMAX .K)
THANEW(INAX.K) = A + B + C

C
700 CONTINUE
C
C0C BACK OF GAGE
C
C
C
C (G)
C

A a4.*(LRRAT**2)*LAKRI* THAOLD(1,KMAX)
B - 2.*LAMZl* THAOLD(0,KKAX-1)
Cl a . - 4.*(LRRAT**2)*LAIl - 2.*LAMZl - 2.*LAXZ2*BIOTB
C -Cl* TIIAOLD(0,KBAX)
IF (N .LT. TIKEI) THEN

D - 0.
ELSE

O w 2.*LANZ2*BIOTB* MFAT
END!?
THANBW(0,KMAX) -A + B + C + D

C
C (H)
C

DO 800 I - l,IMAX-l
Al I . - i./(2.*FLOAT(I))
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£2 a 1. + 1./(2.*FLOAT(I))

A3 a (LRRAT'*2) *LAKRI
A a A3*( &I* THAOLD(I-1,KNAX) *A2* THAOLD(I.1.KMAX))
B a 2.*LAMZI* THAOLD(I,KMAX-1)
Ci a 1. - 2.*(LRRAT**2)*LAMR1 -2.*LAMZI - 2.*LAMZ2*BIOTB
C a C1* THAOLD(ISKMAX)
IF (N .LT. TIMEI) TENJ

D *0.
ELSE

D *2..LANZ2*BIOTB* BFRAT
END IF
THANEW(I,KMAX) =A + B + C + D

800 CONTINUE
C
C WI

C
A = 2.*(LRRAT**2)*LAMRI*P1* THAOLD(IMAX-1,KMAX)

B = 2.*LAMZ1* THAOLD(IMAXKMAX-1)
Ci = 1. - 2.*(LRRAT**2)*LAMRi*Pl - 2.*LAMZi - 2.*LAMZ2*BIOTB

C = Ci* THAOLD(IMAX,KMAX)
IF (N .LT. TIMEl) THEN

D =0.
ELSE

D *2.*LAMZ2*BIOTB* BFRAT

ENDIF
THANEW(IMAXKNAX) - A + B + C + D

C
C-- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C WRITE NON-DIMENSIONAL TEMPERATURE VALUES AT THE HEATED DISK

C TO FILE "DISKT" (DURING DISTURBANCE PROBLEM ONLY).

C **MODIFIED TO WRITE TO '*DISKT" ONLY AT INITIAL TIME STEP

C OF DISTURBANCE PROBLEM AND AT TIME STEPS T+ a .001- .070

C WITH DELT-.0O1 AFTER THE DISTURBANCE PROBLEM STARTS.

C BE CAREFUL TO HAVE ENOUGH TIME STEPS TO HAVE ATLEAST

C .070 IN NON-DIMENSIONAL TIME FOR THE DISTURBANCE (I.E.

C NEED TO HAVE COUNT ATLEAST EQUAL TO 70 WHEN THE PROGRAM

C FINISHES).

C

IF (N .GE. TIMEl) THEN
IF ( (N.EQ.TIMEI) .OR. ((TIME1.EQ.0).AND.(N.EQ.1)) ) THEN

COUNT a 0
WRITE(1O.26) COUNT

DO 1100 I a 0,IGENMX

WRITE(10,30) I,THAOLD(I0O)
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1100 CONTINUE
ENDIF

C
I a N - MAX(TIMEllt) 1 1
Y - NINT(.O01/DELT)

IF ( MOD(XY) .EQ. 0 ) THEN
COUNT a COUNT * I

WRITE(1O,25) COUNT
DO 1125 I x OIGENMX

WRITE(10,30) I,THANEW(I.0)

1125 CONTINUE
ENDIF

ENDIF

C

C ROLL DOWN THAOLD(1:20,1:20) AND FIND MAXIMUM VISUAL

C PERCENT CHANGE. (BE CAREFUL NOT TO DIVIDE BY ZERO.)

C
MAXTHA a 0.
DO 900 I = OIMAX

DO 910 K x 0,KMAX

IF (ABS(THANEW(IK)) .GT. MAXTHA) THEN
MAXTHA - ABS(THANEW(I,K))

ENDIF
910 CONTINUE

900 CONTINUE

C
MAXCH x 0.
DO 950 I a O,IMAX

DO 960 K a 0,KMAX
CHNG - ABS( THANEW(I°K) - THAOLD(I.K) )
IF ( MAXTHA .GT. I.E-15) THEN

VISCHNG a CHNG/MAXTHA
IF (VISCHNG .GT. MAXCH) MAXCH = VISCHNG

ELSE
IF (CHNG .GT. MAXCH) MAXCH - CHNG

ENDIF

'HAOLD(I,K) a THANEW(I,K)

960 CONTINUE

950 CONTINUE
C
C -------------------------------------------------------------

ELSE
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C
C CONVERGES. JUMP OUT OF LOOP.

C
WRITE(2,.*)
WRITE(2o*)'CONIVERGES AFTER ',N-1.' ITERATIONS.'

WRITE(2,*)'MAXIUM CHANGE ON THE LAST ITERATION WAS ',MAXCH,' '

GOTO 2000
C
C ------------------------------------------------------------

ENDIF
SO0 CONTINUE
C --------------------------------------------------------------
C
C IF YOU EXECUTE THESE STATEMENTS, THEN YOU COMPLETED THE

C MAXIMUM NUMBER OF ITERATIONS FOR THE LOOP WITHOUT CONVERGING.

C PRINT MESSAGE IF EXPECTING SOME CONVERGENCE (I.E. TOL > 0).
C

IF (TOL .GT. 0.) THEN
WRITE(2.*)

WRITE(2,*)'QUITS WITHOUT CONVERGING AFTER ',N-1,' ITERATIONS.'
WRITE(2,*)'MAXIKUM CHANGE ON THE LAST ITERATION WAS ',MAXCH, '

ENDIF

C
C ---------------------------------------------------------------

2000 CONTINUE
C
C------------------------------------------------------------------
C PRINT CHECK ON VALUE OF COUNT.

C
IF (COUNT .LT. 70) THEN

WRITE(2,*)
WRITE(2,*)'WARNING: COUNT LESS THAN 70. COUNT = ',COUNT
WRITE(2,*)

ELSE
WRITE(2,*)
WRITE(2,*) 'VALUE OF COUNT IS ',COUNT
WRITE(2,*)
WRITE(2,,)

ENDIF

C
C
C FORMAT STATEMENTS.
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C
5 FORMAT(201E17.10)
25 FORIIAT(15)
30 FORNAT(I5,61,E17. 10)

END
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D.2 The Finite -Differexce Model for the Tuwo-Materiad Problem with

Fully-Inaulated, Outer-Radial Boundary Condition

PROGRAM GAGE4M
C **************************************************

C * 2LT JOSEPH A. BONAFEDE, GA-88M ,

C * FALL 1987
C **

C * ADVISOR: DR. JAMES E. HITCHCOCK
C ***************************************************

C
C GLOSSARY OF MAIN VARIABLES:
C THAOLD - ARRAY STORING NON-DIMENSIONAL TEMPERATURE VALUES FOR

C ALL GRID POINTS. USE THAOLD TO STORE INITIAL VALUES

C AND TO STORE VALUES DURING PREVIOUS TIME STEP.

C USED INTERNALLY
C THANEW - ARRAY TO STORE NEW NON-DIMENSIONAL TEMPERATURE VALUES

C CALCULATED DURING A NEW TIME STEP.

C USED INTERNALLY
C IMAX - DETERMINES NUMBER OF NODES IN THE RADIAL DIRECTION. NUMBER
C OF NODES IN THE RADIAL DIRECTION EQUALS (IMAX + 1).

C INPUT PARAMETER

C K4AX - DETERMINES THE NUMBER OF NODES IN THE Z DIRECTION (FRONT TO

C BACK OF GAGE). NUMBER OF NODES IN THE Z DIRECTION EQUALS

C (KMAX + 1).

C INPUT PARAMETER
C IGAGE - DETERMINES THE NUMBER OF NODES IN THE RADIAL DIRECTION

C WHICH ARE INCLUDED IN THE GAGE. THE RADIAL DIRECTION

C NODES WHICH MAKE UP THE GAGE ARE NODES WITH I = 0 - IGAGE.

C ALSO DETERMINES THE NON-DIMENSIONAL STEP SIZE IN THE

C RADIAL DIRECTION. THE NON-DIMENSIONAL STEP SIZE IN THE

C RADIAL DIRECTION EQUALS I./IGAGE (I.E. DELR = I./IGAGE).

C INPUT PARAMETER

C IGEN - ARRAY WHICH STORES INFORMATION ABOUT TOP SURFACE NODES.
C STORES VALUE OF 1.0 FOR A NODE IF THE NODE IS IN THE HEAT

C GENERATING REGION AND A VALUE OF 0.0 FOR A NODE IF IT IS NOT.

C USED INTERNALLY
C IGENMX - LARGEST RADIAL NODE INCLUDED IN THE HEAT GENERATING REGION.

C INPUT PARAMETER

C DELT - TIME STEP (NON-DIMENSIONAL TIME).

C INPUT PARAMETER

C MAXT - MAXIMUM NUMBER OF TIME STEPS ALLOWED.

C INPUT PARAMETER

C TDIST - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE

C PROBLEM (AS LONG AS TDIST .LE. MAXT).
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C INPUT PARAMETER

O C TIMEI - TIME STEP AT WHICH TO CHANGE TO THE EXTERNAL DISTURBANCE
C PROBLEM IN THE PROGRAM.

C TIMEl-O => EXTERNAL DISTURBANCE PROBLEM ALWAYS

C 2<(TIME<MAXT => SWITCH FROM NON-DISTURBANCE PROBLEM

C TO DISTURBANCE PROBLEM AT N-TIMEI

C TIMElMAXT*1 a> NON-DISTURBANCE PROBLEM ALWAYS

C USED INTERNALLY

C COUNT - NUMBER OF TIME STEPS INTO THE DISTURBANCE PROBLEM (I.E.

C THE NUMBER OF TIME STEPS ALREADY RUN FOR THE DISTURBANCE

C PROBLEM).

C USED INTERNALLY
C MAXTHA - LARGEST ABSOLUTE VALUE FOR NEW NON-DIMENSIONAL TEMPERATURE

C IN THE TIME STEP (I.E. LARGEST VALUE STORED IN THANEW

C ARRAY).

C USED INTERNALLY
C CHNG - ABSOLUTE CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH

C NODE DURING THE LAST TIME STEP.
C USED INTERNALLY

C VISCHNG - CHANGE IN NON-DIMENSIONAL TEMPERATURE AT EACH NODE DURING

C THE LAST TIME STEP AS A FRACTION OF THE LARGEST VALUE FOR

C NON-DIMENSIONAL TEMPERATURE IN THAT TIME STEP (I.E.

C VISCHNG a CHIG/MAXTHA ).

C USED INTERNALLY
C MAXCH - MAXIMUM VALUE FOR VISCHNG DURING THE TIME STEP (AS LONG AS
C THE VALUE FOR MAXTHA FOR THE TIME STEP IS NOT NEAR ZERO. IF

C THE VALUE FOR MAXTHA IS NEAR ZERO, USE ABSOLUTE CHANGE RATHER

C THAN VISUAL CHANGE AS THE CONVERGENCE CRITERIA.)

C USED INTERNALLY
C TOL - VALUE TO USE IN DETERMINING CONVERGENCE (STEADY STATE PROBLEMS

C ONLY). IF RATE OF VISUAL CHANGE IS LESS THAN TOL, THEN ASSUME

C THAT THE PROGRAM HAS CONVERGED SUFFICIENTLY.

C (I.E. MAXCH/DELT < TOL => CONVERGENCE BECAUSE RATE OF CHANGE

C IS SUFFICIENTLY SMALL )

C INPUT PARAMETER

C LRRAT - THE GEOMETRY RATIO (LENGTH OF GAGE)/(RADIUS OF GAGE).

C INPUT PARAMETER

C GBIOT - THE TOP SURFACE BIOT NUMBER BEFORE THE DISTURBANCE.

C INPUT PARAMETER

C GBIOTB - THE BOTTOM SURFACE BIOT NUMBER BEFORE THE DISTRUBANCE.

C INPUT PARAMETER
C DBIOT - THE TOP SURFACE BIOT NUMBER AFTER THE DISTRUBANCE.

C INPUT PARAMETER
C DBIOTE - THE BOTTOM SURFACE BIOT NUMBER AFTER THE DISTURBANCE.
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C INPUT PARAMETER

C BLOT - TOP SURFACE B1OT NUMBER AT THE PARTICULAR TIME STEP.

C USED INTERNALLY
C BIOTB - BOTTOM SURFACE B1OT NUMBER AT THE PARTICULAR TIME STEP.

C USED INTERNALLY

C GENRAT - THE "GENERATION RATIO" (QGEN/DBIOT)/(TFFINAL - TINIT).

C INPUT PARAMETER
C BFRAT - THE RATIO (TFBACK - TINIT)/(TFFRONT - TINIT) WHERE TFBACK

C AND TFFRONT ARE THE FLUID TEMPERATURES DURING THE

C DISTURBANCE PROBLEM.

C INPUT PARAMETER

C DGBIRAT - THE RATIO (DBIOT)/(GBIOT).

C USED INTERNALLY

C RCGB - PROPERTY RATIO (RHO*CP)GAGE / (RHO*CP)MATERIAL B.

C INPUT PARAMETER

C KBG - PROPERTY RATIO (K)MATERIAL B / (K)GAGE.

C INPUT PARAMETER

C RCGGB - PROPERTY RATIO (RHO*CP)GAGE/(RHO*CP)WEIGHTED AVG GAGE AND B.

C USED INTERNALLY
C KGBG - PROPERTY RATIO (K)WEIGHTED AVG GAGE AND B / (K)GAGE.

C USED INTERNALLY
C DELR- SPACIAL STEP IN THE NON-DIMENSIONAL RADIAL DIRECTION.. C USED INTERNALLY
C DELZ - SPACIAL STEP IN THE NON-DIMENSIONAL Z DIRECTION.
C USED INTERNALLY
C DER - VALUE OF THE PARTIAL DERIVATIVE IN THE RADIAL DIRECTION

C OF THE NON-DIMENSIONAL TEMPERATURE VARIABLE AT THE

C OUTER BOUNDARY OF THE PROBLEM. USE A ONE-SIDED,

C BACKWARD FINITE DIFFERENCE.

C USED INTERNALLY
C MAXDER - THE LARGEST VALUE FOR DER (IN ABSOLUTE VALUE) DURING
C THE WHOLE RUN.

C USED INTERNALLY
C I - INDEX VARIABLE FOR NON-DIMENSIONAL RADIAL DIRECTION.

C USED INTERNALLY
C K - INDEX VARIABLE FOR NON-DIMENSIONAL Z DIRECTION.

C USED INTERNALLY
C N - INDEX VARIABLE FOR TIME STEPS.

C USED INTERNALLY
C RUNNUM - THE RUN NUMBER (USED FOR BOOK KEEPING PURPOSES).

C INPUT VARIABLE

C LAMRILAMZ1,LAMZ2,PI,P2,P3 - COMMON PRODUCT TERMS IN THE FINITE

C ELEMENT EQUATIONS.

C USED INTERNALLY
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C

C DECLARE VARIABLES:
IMPLICIT CHARACTER(A-Z)
REAL THAOLD(O:40,O:40),THANEW(O:40,O:40)

REAL IGEN(O:20)
REAL DELT

INTEGER MAXT,TDISTTINE1 ,COUNT
REAL KAXTHA,CHNG,VISCIING,MAXCH,TOL

INTEGER IMAX,KMAX, IGENMX, IGAGE
REAL LRRAT
REAL BIOTBIOTB,GBIOT,GBIOTB,DBIOT,DBIOTB
REAL DGBIRAT,GENRAT,*BFRAT

REAL RCGB.KBG,RCGGB,KGBG

REAL DELRDELZ,LAMRILAMZILAMZ2,Pl,P2,P3
REAL DER,MAXDER,
REAL Ai,A2,A3,A,B1,B,C1,C2,C3,C,D

REAL NUMER,DENOM
INTEGER RUNNUN
INTEGER I,K,N

INTEGER X,Y

C

C --------------------------------------------------------------
C OPEN INPUT/OUTPUT FILES.

C
OPEN(UNIT=1 ,FILE='G4INP' ,STATUSu' OLD')
OPEN (UNIT=2 ,FILE='G4OUT' ,STATUS='NEW')

OPENCUNIT=3,FILE='INIT' ,STATUS='OLD')
OPEN(UNIT=1O,FILE-'DISKT' ,STATUS*'NEW')

REWIND (UNIT=1)
REViIND(UNIT=3)

C

C --------------------------------------------------------------------

C READ INPUT PARAMETERS.
C

READ (1,*i)
READ(1,*) DELT
READ(l,*) MAXT

READ(1s*) TDIST
READ(1,*) TOL

C
READ(1,*) IMAX

READ(1,*) KNAX

READ(1,*) IGAGE

READ(I,*) IGENMX
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READ(l,*) LRRAT

READ(1,*) GBIOT

READ(1,*) GBIOTB

READ(1o*) DBIOT

READ(1,*) DBIOTB

READ(1 ,*) GENRAT
READ(1,*) BFRAT

READ(1,*) DGBIRAT

C

READ(,*) RCGB
READ(1,*) KBG

C

READ(1,*) RUNNUM

C
C---------------------------------------------------------------------
C INITIALIZE PARAMETER NEEDED IN PRINTING OUT HEADER ( USING HEADER
C INSTEAD OF JUST ECHOING THE INPUT ).
C

IF TDIST .LE. 1 ) THEN

TIME1 = 0

ELSEIF (TDIST .GT. MAXT) THEN

TIME1 = MAXT + 1
ELSE

TIME1 = TDIST
ENDIF

C

C -----------------------------------------------------------------
C PRINT HEADER.

C

WRITE(2,*)'IRUN NUMBER = ',RUNNUM
WRITE(2,*) 'INPUT VALUES:'

WRITE(2,*)
WRITE(2,*)'** GEOMETRY OF THE GAGE AND FINITE ELEMENT MESH **'

WRITE(2,*)

WRITE(2,*)' GRID POINTS IN R-DIRECTION : 0 - ',IMAX
WRITE(2,*)' GRID POINTS IN Z-DIRECTION : 0 - ',KMAX

WRITE(2,*)' R-DIRECTION GRID POINTS INCLUDED'
WRITE(2,)' IN THE GAGE 0 - ',IGAGE

IF (IGENMX .LT. 0) THEN
WRITE(2,*)' R-DIRECTION GRID POINTS INCLUDED'

WRITE(2,*)' IN THE HEAT GENERATING DISK NONE'
ELSEIF (IGENMX .EQ. 0) THEN

WRITE(2,*)' R-DIRECTION GRID POINT INCLUDED'
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WRITE(2,*)' IN THE HEAT GENERATING DISK 0'

ELSE
WRITE(2,*)' R-DIRECTION GRID POINTS INCLUDED'
WRITE(2,*)' IN THE HEAT GENERATING DISK 0 - ',IGENMX

ENDIF

WRITE(2,*)
WRITE(2,o*)' RATIO OF (LENGTH OF GAGE) / (RADIUS OF GAGE) * 'oLRRAT
WRITE(2,*)

WRITE(2,*)
WRITE(2,*)'**TIME STEP AND LIMITS INCLUDING EXTERNAL PARAMETERS**'
WRITE(2,*)
WRITE(2,)' DELTA T m ',DELT
WRITE(2,*)
WRITE(2,*)' MAXIMUM NUMBER OF TIME STEPS = ',MAXT
WRITE(2,*)' TOLERANCE FOR CONVERGENCE = ',TOL
WRITE(2,*)

IF (TIMEI .EQ. 2) THEN
WRITE(2,*)' TIME STEP ASSIGNED TO THE "START UP"'
WRITE(2,*)' PROBLEM ( NO EXTERNAL DISTURBANCE ) : 1'
WRITE(2,*)' BIOT NUMBER AT THE TOP SURFACE = ',GBIOT
WRITE(2,*)' BIOT NUMBER AT THE BOTTOM SURFACE = ',GBIOTB
WRITEC2,*)
WRITE(2,*)' RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ',RCGB

WRITE(2,*)' RATIO (K)KkT.B / (K)GAGE = ',KBG

ENDIF
IF (TIMEl .GT. 2) THEN

WRITE(2,*)' TIME STEPS ASSIGNED TO THE "START UP"'
WRITE(2,*)' PROBLEM ( NO EXTERNAL DISTURBANCE ) 1 -

& TIME1-1
WRITE(2,*)' BIOT NUMBER AT THE TOP SURFACE = ',GBIOT
WRITE(2,*)' BIOT NUMBER AT THE BOTTOM SURFACE = ',GBIOTB
WRITE(2,*)

WRITE(2,*)' RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ',RCGB

WRITE(2,)' RATIO (K)MAT.B / (K)GAGE = ',KBG

ENDIF
IF ((TIMEl .EQ. O).AND.(MAXT .GT. 1)) THEN

WRITE(2,*)
WRITE(2,) TIME STEPS ASSIGNED TO THE PROBLEM'
WRITE(2,*) WITH AN EXTERNAL DISTURBANCE : I - ', MAXT

WRITE(2,) BIOT NUMBER AT THE TOP SURFACE = ',DBIOT
WRITE(2,*)' BIOT NUMBER AT THE BOTTOM SURFACE = ',DBIOTB
WRITE(2,*) RATIO (QGEN/DBIOT)/(TFFINAL - TI) = ',GENRAT
WRITE(2,') RATIO (TFBACK - TI)/(TFFRONT - TI) • ',BFRAT
WRITE(2,*)' RATIO (DBIOT)/(GBIOT) a ',DGBIRAT
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WRITE(2,*)0WRITE(2,*)' RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B *',RCGB
WRITE (2,*) RATIO (K)MAT.B / (K)GAGE a P.KEG

END IF
IF ((TIMEI .EQ. O).AND.(MAXT .EQ. 1)) THEN

WRITE(2,*)
WRITE(2,*)' TINE STEP ASSIGNED TO THE PROBLEM'
WRITEC2,*)' WITH AN EXTERNAL DISTURBANCE 1
WRITE(2,*)' BIOT NUMBER AT THE TOP SURFACE I 'DBIOT
WRITEC2,*)' BIOT NUMBER AT THE BOTTOM SURFACE = ',DBIOTB
WRITE(2,*)' RATIO (QGEN/DBIOT)/(TFFINAL -TI) = '.GENRAT
WRITE(2,*)' RATIO (TFBACK - TI)/(TFFRONT -TI) a'PEFRAT

WRITE(2,*)' RATIO (DBIOT)/(GBIOT) ='DGBIRAT

WRITE(2, *)

WRITE(2,*)' RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ,RCGB
WRITE(2.*)' RATIO (K)MAT.B / (K)GAGE = ',KBG

ENDIF

IF ((TIME1 .GT. O).AND.(TIME1 .EQ. MAXT)) THEN
WRITE(2 ,*
WRITEC2,*)' TIME STEP ASSIGNED TO THE PROBLEM'
WRITE(2,*)' WITH AN EXTERNAL DISTURBANCE ',TIME1

WRITE(2,*)' BlOT NUMER AT THE TOP SURFACE = ',DBIOT
WRITE(2,*)' BlOT NUMBER AT THE BOTTOM SURFACE = ',DBIOTB
WRITE(2,*)' RATIO (QGENIDBIOT)/(TFFNL TI) = ',GENRAT0WRITE(2,*)' RATIO (TFBACK - TI)/(TFFRONT -TI) z ',BFRAT
WRITE(2,*)' RATIO (DBIOT)/(GBIOT) = ',DGBIRAT

WRITE (2,*)

WRITE(2,*)' RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B = ',RCGB

WRITE(2,*)' RATIO (K)MAT.B / (K)GAGE = ',KBG

ENDIF

IF ((TIMEl .GT. O).AND.(TIMEl .LT. MAXT)) THEN
WRITE(2,*)
WRITE(2,*)' TIME STEPS ASSIGNED TO THE PROBLEM'
WRITE(2,*)' WITH AN EXTERNAL DISTURBANCE

k TIMEI,' - ',MAXT
WRITE(2,*)' BlOT NUMBER AT THE TOP SURFACE = ,DBIOT

WRITE(2,*)' BlOT NUMBER AT THE BOTTOM SURFACE = ',DBIOTB

WRITE(2,s)' RATIO (QGEN/DBIOT)/(TFFINAL -TI) = 'IGENRAT

WRITE(2,*)' RATIO (TFBACK - TI)/(TFFRONT -TI) = ',BFRAT

WRITE(2,*)' RATIO (DBIOT)/(GBIOT) - ',DGBIRAT

WRITE(2,*)

WRITE(2,*)' RATIO (RHO*CP)GAGE / (RHO*CP)MAT.B - ',RCGB

WRITE(2,*)' RATIO (K)MAT.B / (K)GAGE a ',KBG

END IF
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WRITE(2, *
WRITEC2,*)
WRITE(2,*) 'RESULTS:'

WRITE(2, *)

C

C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C INITIALIZE ARRAYS AND OTHER PARAMETERS.

C
READ(3,*)
DO 100 K z 0,KMAX

DO 110 I a O,IMAX

THANEW(I,K) - 0.
READ(3,5) THAOLD(I,K)

IF (TIMEl .EQ. 0) THAOLD(I,K) =THAOLD(I,K)*GENRAT*DGBIRAT

110 CONTINUE
100 CONTINUE

C
DC 120 I = O,IGAGE

IF (I .LE. IGENMX) THEN

IGENCI) = 1.

ELSE

IGEN(I) = 0.
ENDIF

120 CONTINUE
C

DELR = I./FLOAT(IGAGE)

DELZ a 1./FLOAT(KMAX)

C

LAMR1 - DELT/DELR**2

LAMZ1 - DELTIDELZ**2
LAMZ2 - DELT/DELZ

C

NUMER - 2.*RCGB*FLOATCIGAGE)

DENOM - RCGB*(FLOAT(IGAGE) - .25) + (FLOAT(IGAGE) *.2S)

RCGGB - NUMER/DENOM

C
NUMER a (FLOAT(IGAGE) - .25) + KBG*(FLOAT(IGAGE) *.2S)
DENOM = 2.*FLOAT(IGAGE)

KGBG a NUMER/DENOM

C
P1 - (FLOAT(IMAX) - .5)f(FLOAT(IMAX) - .2S)
P2 = 1. - 1./(2.*FLOAT(IGAGE))

P3 a 1. + 1./(2.*FLOAT(IGAGE))

C

C --------------------------------------------------------------
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*~C-

C MAIN LOOP.

C
IF (TIMEI .EQ. 0) THEN

BIOT a DBIOT

BIOTB a DBIOTB

ELSE

BIOT a GBIOT

BIOTB = GBIOTB

ENDIF
COUNT = 0

MAXCH a 99.99
MAXDER = 0.

C
C ----------------------------------------------------------------

DO 500 N = 1,MAXT

IF ((MAXCH/DELT) .GT. TOL) THEN

C----------------------------------------------------------------
C
C

C REDEFINE BIOT NUMBERS AND UPDATE THAOLD WHEN STARTING

C THE DISTURBANCE PROBLEM.

C

IF (N .EQ. TIMEl) THEN
BIOT - DBIOT

BIOTB = DBIOTB

DO 1000 I = 0,IMAX
DO 1010 K = O,KMAX
THAOLD(I,K) = THAOLD(IK)*GENRAT*DGBIRAT

1010 CONTINUE

1000 CONTINUE
ENDIF

C
C
C SOLVE FOR NEXT TIME STEP.
C
C
C FRONT OF GAGE
C
C
C
C (A)
C
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A a4.*(LRRAT**2)*LAKt1* THAOLD(1,O)
B - 2.*LAKZI* THAOLD(0l1)
Cl aI. - 4.*(LRRAT**2)*LAKRI - 2.*LAKZi - 2.*LAKZ2*EIOT

C - Cl* THAOLD(0,0)

IF (N .LT. TINEl) THEN
D - 2.*LAMZ2*BIOT* IGENCO)

ELSE
D a 2.*LAXZ2*BIOT*(l. + IGEN(O)*GENRAT)

END IF
THANEW(OO) - A + B +C +D

C
c (B)
C

DO 640 I z 1,IGAGE-1
At - 1 ./(2.*FLOAT(I))
A2 -1. + l./(2.*FLOATcI))
A3 = (LRRAT**2)*LAMRI
A = A3*( Al* THAOLDCI-l,0) + A2* THAaLD(I+l,O))
B =2.*LAMZl* THAOLD(I,l)

Cl -1. - 2.*(LRRAT**2)*LAMI - 2.*LAMZI - 2.*LAMZ2*BIOT
C - CI* THAOLD(I0O)
IF (N .LT. TIMEI) THEN

D = 2.*LAMZ2*BIOT* IGEN(I
ELSE

D a2.*LAMZ2*BIOT*(l. + IGEN(I)*GENRAT)
ENDIF
THANEW(I,0) = A + B + C + D

640 CONTINUE
C
C (C)
C

Al - RCGGB*(LRRAT**2)*LAMR1
A - Al*( P2* THAOLD(IGAGE-l,0) + P3*KBG* THAOLD(IGAGE+l,0))
B a 2.*RCGGB*KGBG*LANZ1* THAOLD(IGAGED1)
Cl a- RCGGB*(LBRAT**2)*P2*LA4RI
C2 a - RCGGB*KBG*(LRRAT**2)*P3*LAMR1
C3 w- 2.*FRCGGB*KGBG*LAMZl - 2.*RCGGB*BIOT*LAMZ2
C - (1. +Cl +C2 + C3)* THAOLD(IGAGE,0)
IF (N .LT. TIMEl) THEN

D =2.*RCGGB*BIOT*LAMZ2* IGENCIGAGE)
ELSE

D 2.*aCGGB*BIOT*LAMZ2*(l. + IGEN(IGAGE)*GENRAT)
ENDIF
THANEW(IGAGE,0) = A + B + C + D
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*C
C (D)
C

DO 660 I IGAGE~l,IMAX-l
Al a 1. - l./C2.*FLOATCI))
A2 a 1. + l./C2.*FLOAT(I))
A3 - RCGB*KBG*(LRRAT**2)*LAMRI
A - A3*( Al* THAOLD(I-l0O) + A2* THAOLDCI+l.0))
B a 2.*RCGB*KBG*LAMZl* THAOLDCI~l)
Cl - - 2.*RCGB*KBG*(LRRAT**2)*LAMRI

C2 a - 2.*RCGB*KBG*LAMZl
C3 = - 2.*RCGB*BIOT*LAMZ2
C = (I. + Cl + C2 +C3)* THAOLD(I,0)
IF (N .LT. TIMEl) THEN

D =0.
ELSE

D =2.*RCGB*BIOT*LAMZ2
ENDIF
THANEW(I,0) = A + B + C + D

660 CONTINUE
C
C CE)*C

A = 2.*RCGB*KBG*(LRRAT**2)*Pl*LAMRl* THAOLD(IMAX-1,0)
B = 2.*RCGB*KBG*LAMZl* THAOLD(IMAX,l)
Cl - - 2.*RCGB*KBG*(LRRAT**2)*Pl*LAMRl
C2 -- 2.*RCGB*KBG*LAMI4Z
C3 -- 2.*RCGB*BIOT*LAMZ2
C - (l. +Cl + C2 + C3)* THAOLD(IMAX0O)
IF (N .LT. TIMEI) THEN

D =0.
ELSE

D *2.*RCGB*BIOT*LAMZ2
END IF
THANEW(IMAXQ) = A + B + C + D

C
C
C INTERIOR OF GAGE
C
C

DO 700 K wlKMAX-l
C
C (F)
C
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A - 4.*(LURAT**2)*LANRI* THAOLD(l.K)

B - LAMZI*( THAOLD(0,K-l) + THAOLD(0.K~l))
Cl - 1. - 4.*(LRRAT**2)*LAMRl - 2.*LAMZl

C - Cl* THAOLD(0,K)
THANEW(O,K) a A + B + C

C
C (G)
C

DO 740 I a l,IGAGE-l

Al 1 . - l./(2.*FLOAT(I))

A2 a 1. + l./(2.*FLOAT(I))

A3 = (LRRAT**2)*LAMRl
A -A3*( Al* THAOLD(I-l,K) + A2* THAOLD(I+l,K))
B = LAMZl*( THAOLD(I,'C-l) + THAOLD(IK+l))

Cl = 1. - 2.*(LRRAi***2)*LAMRI - 2.*LAMZI

C = Cl* THAOLD(I,K)

THANEW(ISK) = A + B + C
740 CONTINUE
C
C (H)

C

Al a RCGGB*(LRRAT**2)*LAMRl
A - Al*( P2* THAOLD(IGAGE-l,K) + P3*KBG* THAOLD(IGAGE+l,K))

Bl = RCGGB*KGBG*LAMZl
B a Bl*( THAOLD(IGAGEK-l) + THAOLD(IGAGE,Kl))

Cl z - RCGGB*(LRRAT**2)*P2*LAMR1

C2 = - RCGGB*KBG*(LRRAT*4'2)*P3*LAMRI
C3 = - 2.*RCGGB*KGBG*LANZI

C a (1. + Cl + C2 + C3)* THAOLD(IGAGEIK)

THANEU(IGAGE,K) z A + B + C

C

C (I)
C

DO 760 I z IGAGE+l,IMAX-1

Al = I. - I.I(2.*FLOAT(l))

A2 x I. + l./(2.*FLOAT(I))

A3 = RCGB*KBG*(LRRAT**2)*LAMR1
A aA3*( Al* THAOLD(I-1,K) + A2* THAOLD(I+1,K))

Bl m RCGB*KBG*LAMZl
B a Bl*( THAOLD(I,K-l) + THAOLD(I,K+l))
Cl = -2.*RCGB*KBG*(LRRAT**2)*LAMR1

C2 a 2.*RCGB*KEG*LANZl

C a(I. + Cl + C2)* THAOLD(I K)

THANEW(I,K) a A + B +C
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760 CONTINUE

C
C()
C

A z 2.*RCGB*KBG*(LRRAT**2)*pl*LAMRI* THAOLD(IHAX-1,K)
BI a RCGB*KBG*LAMZI
B a 8isC THAOLDCIKAXK-1) + THAOLD(IMA,K+sl))
Cl = - 7.RG*B*LdT*)P*AR

C2 a - 2.*RCGB*KBG*LAMZ1
C - (I. + Cl + C2)* THAOLD(IMAX,K)
THANEW(IMAX,K) a A + B + C

C

700 CONTINUE
C

C
C BACK OF GAGE
C

C
C

C (K)
C

A =4.*(LRRtAT**2)*LAMRl* THAOLD(I,KHAX)

B 2.*LANZl* THAOLD(0,K4AX-l)
Cl =1. - 4.*(LRRAT**2)*LAMRl - 2.*LAMZl 2.*LAMZ2*BIOTB
C =Cl'. THAOLD(0,KMAX)
IF (N .LT. TIMEl) THEN

D =0.
ELSE

D =2.'.LAMZ2'BIOTB* MFAT
ENDIF
THANEWCO,KMAX) = A + B + C +D

C
C (L)
C

DO 840 I 1 ,IGAGE-l
Al = 1. - ./(2.*FLOAT(I))
A2 - 1. * ./(2.'.FLOAT(I))
A3 = (LRRAT**2)*LAMRI
A = A3*C Al*. THAOLD(I-l,KMAY) +A2'. THAOLD(I.KMAX))
B = 2.'.LAMZl'. THAOLDCI,KMAX-1)
Cl - 1. - 2.'.CLRRAT**'2)'.LAMRl - 2.'.LAMZl - 2.'.LAMZ2'.BIOTB
C a Cl'. THAOLD(I,KMAX)
IF (N .LT. TIME1) THEN

D - 0.
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ELSE
D a 2.*LAHZ2*BIOTB* MFAT

ENDIF

THANEW(I,KMAX) - A +B + C + D

840 CONTINUE
C
C (4

C

Al a RCGGB*(LRRAT**2)*P2*LAMRl

A2 a RCGGB*KBG*(LRRAT**2)*P3*LAMRI
A a Al* THAOLD(IGAGE-l,KNAX) + A2* THAOLD(IGAGE+l.KMkX)

B - 2. *RCGGB*KGBG*LAMZl* THAOLD(IGAGE,KMAX-l)

Cl a - RCGGB*(LRRAT**2)*P2*LAMRl
C2 = - RCGGB*KBG*(LRRAT**2)*P3*LAHR1

C3 = - 2.*RCGGB*KGBG*LAMZl - 2.*RCGGB*BIOTB*LAMZ2

C = (1. + Cl + C2 + C3)* THAOLD(IGAGE,KNAX)

IF (N .LT. TIHEl) THEN

D =0.

ELSE.

D =2. *RCGGB*BIOTB*LAMZ2* MFAT

ENDIF

THANEW(IGAGE,KMAX) a A + B + C + D

C.C (N)
C

DO 860 1 IGAGE+l,IMAX-l
Al = 1. - ./(2.*FLOAT(I))

A2 = 1. * ./(2.*FLOAT(I))

A3 = RCGB*KBG*(LRRAT**2)*LAMRl

A = A3*( Al* THAOLD(I-l,KMAX) + A2* THAOLD(I+l,KMAX))

B = 2.*RCGB*KBG*LAMZI* THAOLD(I ,KMAX-l)
Cl z - 2.*RCGB*KBG*(LRRAT**2)*LAMRl

C2 = - 2.*RCGB*KBG*LAMZl
C3 = - 2.*RCGB*BIOTB*LAMZ2
C - (l. + Cl + C2 + C3)* THAOLD(IDKMAX)

IF (N .LT. TIMEl) THEN

D =0.

ELSE

D =2.*RCGB*BIOTh*LAMZ2* MFAT

ENDIF

THANEW(I,KHAX) - A + B + C + D

860 CONTINUE

C

C (0)

205



*c
A u 2.*RCGB*KBG*(LRRAT**2)*PI*LAMRI* THAOLD(IMAX-1,KMAX)
B - 2.*RCGB*KBG*LAMZI* THAOLD(IMAXKMAX-1)
Cl w - 2.*RCGB*KBG*(LRRAT**2)*PI*LAMR1

C2 a - 2.*RCGB*KBG*LAMZ1

C3 a - 2.*RCGB*BIOTB*LAMZ2

C - (1. + Cl + C2 + C3)* THAOLD(IMAX,KAX)
IF (N .LT. TIMEl) THEN

D 0.
ELSE

D = 2.*RCGB*BIOTB*LAMZ2* BFRAT
ENDIF
THANEW(IMAX,KMAX) = A + B + C + D

C
C
C
C
C WRITE NON-DIMENSIONAL TEMPERATURE VALUES AT THE HEATED DISK

C TO FILE "DISKT" (DURING DISTURBANCE PROBLEM ONLY).
C ** MODIFIED TO WRITE TO "DISKT" ONLY AT INITIAL TIME STEP

C OF DISTURBANCE PROBLEM AND AT TIME STEPS T+ = .001-.070

C WITH DELT=.001 AFTER THE DISTURBANCE PROBLEM STARTS.
C BE CAREFUL TO HAVE ENOUGH TIME STEPS TO HAVE ATLEAST
C .070 IN NON-DIMENSIONAL TIME FOR THE DISTURBANCE (I.E.

C NEED TO HAVE COUNT ATLEAST EQUAL TO 70 WHEN THE PROGRAM
C FINISHES).
C

IF (N .GE. TIMEI) THEN
IF ( (N.EQ.TIMEI) .OR. ((TIME1.EQ.O).AND.(N.EQ.1))) THEN

COUNT = 0

WRITE(10,25) COUNT

DO 1100 I = OIGENMX
WRITE(10,30) ITHAOLD(I,O)

1100 CONTINUE
ENDIF

C
X = N - MAX(TIME1.1) + 1
Y = NINT(.OOI/DELT)
IF ( MOD(X,Y) .EQ. 0 ) THEN

COUNT a COUNT + 1
WRITE(10,25) COUNT

DO 1125 I a 0,IGENMX

WRITE(10,30) I,THANEW(I,0)
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1125 CONTINUE

ENDIF

END IF

C
C - - - - - - - - - - - - - - - - - - - - - - - - - -

C ROLL DOWN THAOLD(1:20,1:20) AND FIND MAXIMUM VISUAL
C PERCENT CHAj.GE. (BE CAREFUL NOT TO DIVIDE BY ZERO.)

C

MAXTHA a 0.
DO 900 I OIMAX

DO 910 K a 0,KMAX
IF (ABS(THANEW(I,K)) .GT. MAXTHA) THEN

MAXTHA a ABS(THANEW(IK))
ENDIF

910 CONTINUE

900 CONTINUE

C

MAXCH = 0.
DO 950 I - OPIMAX

DO 960 K a O,KMAX
CHNG = ABS( THANEW(I,K) - THAOLD(IK))

IF ( MAXTHA .GT. 1.E-16) THEN
VISCHNG = CHNG/MAXTHA

IF (VISCHNG .GT. MAXCH) MAXCH = VISCHNG
ELSE

IF (CliNG .GT. MAXCH) MAXCH = CHNG
ENDIF

THAOLD(I.K) a THANEW(I,K)

960 CONTINUE

950 CONTINUE

C

C-- - - - - - - - - - - - - - - - - - - - - - - - - -

C FIND MAXIMUM RADIAL DIRECTION DERIVATIVE AT OUTER

C BOUNDARY OF THE PROBLEM. SAVE THE MAXIMUM VALUE

C FROM THE WHOLE RUJN (ALL ITERATIONS INCLUDED) TO

C PRINT OUT WHEN FINISHED WITH THE MAIN LOOP.

C
DO 1200 K = O,KMAX

DER a (THANEW(IMAXIK) - THANEWCIMAX-1,K))/DELR

IF (ABS(DER) .GT. ABS(MAXDER)) MAXDER = DER

1200 CONTINUE

C

C -----------------------------------------------------------------

ELSE
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C
C CONVERGES. JUMP OUT OF LOOP.

C
WRITE(2,*)

WRITE(2,*)'CONVERGES AFTER '.N-1,' ITERATIONS.'

WRITE(2,*)'MAXIMUM CHANGE ON THE LAST ITERATION WAS ',MAXCH'.'

GOTO 2000

C
C------------------------------------------------------------------

ENDIF

500 CONTINUE

C------------------------------------------------------------------
C
C IF YOU EXECUTE THESE STATEMENTS, THEN YOU COMPLETED THE

C MAXIMUM NUMBER OF ITERATIONS FOR THE LOOP WITHOUT CONVERGING.

C PRINT MESSAGE IF EXPECTING SOME CONVERGENCE (I.E. TOL > 0).

C
IF (TOL .GT. 0.) THEN

WRITE(2,*)
WRITE(2,*)'QUITS WITHOUT CONVERGING AFTER ',N-1,' ITERATIONS.'

WRITE(2,*)'MAXIMUM CHANGE ON THE LAST ITERATION WAS ',MAXCH,'.'

ENDIF

*C

C -------------------------------------------------------------------

C -------------------------------------------------------------------
2000 CONTINUE
C
C -------------------------------------------------------------------
C PRINT VALUE OF RADIAL DIRECTION DERIVATIVE AT OUTER BOUNDARY THAT
C WAS THE LARGEST (IN ABSOLUTE VALUE) DURING THE RUN.

C
WRITE(2,*)

WRITE(2,*)'MAXIMUM RADIAL DIRECTION DERIVATIVE AT OUTER BOUNDARY'

WRITE(2,*)'DURING THE RUN WAS ',MAXDER,' .'
C

C PRINT CHECK ON VALUE OF COUNT.

C
IF (COUNT .LT. 70) THEN

WRITE(2*)
WRITE(2,*)'WARNING: COUNT LESS THAN 70. COUNT = ',COUNT

WRITE(2,*)

ELSE

0
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WRITE(2,,)

JRITE(2,*)'VALUE OF COUNT IS ',COUNT
WRITE(2,*)
WRITE(2,*)

ENDIF
C

C FORMAT STATEMENTS.
C
5 FORMAT(20X,E7. 10)
25 FORMAT(IS)
30 FORMAT(IS,SX,E17.10)

C
END
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D.3 Code to Compare the Finite-Difference and the Series Solution Estimates for

Surface Heat Flux

PROGRAM HTTR2M
C ****************************************************************

C * 2LT JOSEPH A. BONAFEDEo GA-88M *

C * FALL 1987 ,

C **

C * ADVISOR: DR. JAMES E. HITCHCOCK *
C ****************************************************************

C
C DRIVER FOR SUBROUTINE GETQ.

C GETS INPUTS FOR CALL TO SUBROUTINE GETQ FROM THE INPUT FILE TO

C GAGE2, I.E. "G2INP" . OPENS THE OUTPUT FILE FOR GETQ WHICH IS

C ALSO THE OUTPUT FILE FOR GAGE2, I.E. "G2OUT" (UNIT=2).

C OPENS THE INPUT FILE FOR GETQ, I.E. "DISKT" (UNIT=10).

C OPENS THE OUTPUT DATA FILES "PTVDF" (UNIT=11), "PTPDF" (UNIT=12),

C "PTSER" (UNIT=13), AND "PTFD" (UNIT=14).

C
C ** MODIFIED TO WORK WITH PROGRAMS GAGE2M OR GAGE2N AND
C ** SENDS VALUE OF 70 FOR COUNT AND .001 FOR DELT ALWAYS.

C
C--------------------------------------------------------------
C DECLARE VARIABLES.
C

IMPLICIT CHARACTER(A-Z)

INTEGER IGENMX,COUNT
REAL DBIOT,DELT,GENRAT

INTEGER MAXT,TDIST

C
C---------------------------------------------------------------
C OPEN INPUT AND OUTPUT FILES.
C

OPEN(UNIT=I,FILE='G2INP' ,STATUS='OLD')
OPEN(UNIT=2,FILE='G2OUT' ,STATUS='OLD')
OPEN(UNIT=10,FILE='DISKT' ,STATUS='OLD')
OPEN(UNIT=1I,FILE='PTVDF' ,STATUS='NEW')

OPEN(UNIT=12,FILE='PTPDF' ,STATUS='NEW')

OPEN(UNIT=13,FILE='PTSER' ,STATUS='NEW')
OPEN(UNIT=14,FILE='PTFD' ,STATUS='NEW')

REWIND(UNIT=1)
C
C---------------------------------------------------------------
C GET INPUTS TO SUBROUTINE.

C

0
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READ(1,*)
READ(1,*)
READ(1,*) MAXT
READ(1,*) TDIST

READ(1 *)
READ(1,*)
READ (1 ,*)
READ(1,*) IGENMX

READ (1 *)
READ(1*)
READ(1,*)

READ(I,*) DBIOT
READ(1 ,*)

READ(1,*) GENRAT

C
IF (TDIST .GT. MAXT) THEN

WRITE(2,*)
WRITE(2,*)'PROBLEM: TDIST GREATER THAN MAXT. THIS WAS NOT'

WRITE(2,*)'A DISTURBANCE PROBLEM.'

STOP

ENDIF

C
DELT .001

COUNT = 70
C

C CALL SUBROUTINE.

C
CALL GETQ ( COUNT,IGENMX,DBIOT,DELT,GENRAT)

C

END
C ******************************************************************

C **************************************************************

SUBROUTINE GETQ ( NUMT,IMX,BIOT,DELT,GENRAT )
C
C ****************************************************************

C * 2LT JOSEPH A. BONAFEDE, GA-88M

C * FALL 1987 *

C **

C * ADVISOR: DR. JAMES E. HITCHCOCK *
C *****************************************************************
C

C THIS SUBROUTINE DETERMINES THE NON-DIMENSIONAL HEAT

C TRANSFER RATE AT THE HEATED DISK FOR BOTH THE SERIES
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C SOLUTION AND THE FINITE DIFFERENCE SOLUTION.

C THE SUBROUTINE COMPARES THE DIFFERENT VALUES AND PRINTS

C THE RESULTS IN THE FILE "G2OUT" (UNIT=2).

C DATA NEEDED TO DETERMINE THE NON-DIMENSIONAL HEAT TRANSFER
C RATES IS STORED IN THE FILE "DISKT" (UNIT=1O).

C
C GLOSSARY OF MAIN VARIABLES:
C NUMT - THE NUMBER OF SURFACE HEAT TRANSFER VALUES TO CALCULATE.
C INPUT

C IMX - THE MAXIMUM VALUE FOR RADIAL NODE INCLUDED IN THE DISK,

C I.E. IGENMX. (NODES I=O,IMX ARE INCLUDED IN THE DISK.)

C INPUT

C BIOT - THE SURFACE BIOT NUMBER FOR THE DISTURBANCE PROBLEM.

C INPUT

C DELT - THE NON-DIMENSIONAL TIME STEP USED IN THE PROGRAM.

C INPUT

C GENRAT - THE NON-DIMENSIONAL RATIO (QG/DBIOT)/(TFFINAL - TI)

C USED IN THE PROGRAM

C INPUT

C THANOW - MATRIX STORING THE VALUES FOR THATA(I) AT TIME = J
C FOR I=O,IMX.

C USED INTERNALLY

C THAPRE - MATRIX STORING THE VALUES FOR THATACI) AT TIME T = J-1

C FOR I=O,IMX.
C USED INTERNALLY

C SUM - MATRIX WHICH STORES THE VALUES (THANOW(I)-THAPRE(I))/B

C FOR I=O,IMX. B IS A FUNTION OF TIME T (TIME OF THE SURFACE

C HEAT TRANSFER VALUE) AND TIME J (TIME ASSOCIATED WITH THANOW).

C USED INTERNALLY

C B - THE DENOMINATOR TERM INSIDE THE SERIES FOR THE SERIES SOLUTION.

C B IS A FUNCTION OF TIME T (TIME OF THE SURFACE HEAT TRANSFER

C VALUE) AND TIME J (TIME ASSOCIATED WITH THANOW).

C USED INTERNALLY

C CONS - THE CONSTANT TERM IN THE SERIES SOLUTION.

C USED INTERNALLY
C CONFD - THE CONSTANT TERM IN THE FINITE DIFFERENCE SOLUTION.

C USED INTERNALLY

C XS - VARIABLE USED FOR AN INTERMEDIATE RESULT IN THE SERIES SOLUTION.

C USED INTERNALLY
C XFD - VARIABLE USED FOR AN INTERMEDIATE RESULT IN THE FINITE

C DIFFERENCE SOLUTION.

C USED INTERNALLY

C QS - THE FINAL VALUE FOR AVERAGE SURFACE HEAT TRANSFER AT THE DISK

C FOR THE SERIES SOLUTION.
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C USED INTERNALLY

C QFD - THE FINAL VALUE FOR AVERAGE SURFACE HEAT TRANSFER AT THE DISK

C FOR THE FINITE DIFFERENCE SOLUTION.

C USED INTERNALLY

C VISDIFF - THE PERCENT OF THE FULL SCALE VALUE (MAX THEORETICAL VALUE

C FOR SURFACE HEAT TRANSFER) BY WHICH THE RESULTS FOR

C AVERAGE SURFACE HEAT TRANSFER AT THE DISK DIFFER.
C (FULL SCALE = 1. + GENRAT).

C USED INTERNALLY
C PERDIFF - THE PERCENT DIFFERENCE BETWEEN THE RESULTS FOR AVERAGE

C SURFACE HEAT TRANSFER AT THE DISK (USING THE FINITE

C DIFFERENCE VALUE IN THE DENOMINATOR).

C USED INTERNALLY
C T - INDEX DENOTING THE TIME STEP FOR WHICH WE ARE CURRENTLY

C CALCULATING THE SURFACE HEAT TRANSFER.

C USED INTERNALLY

C J - INDEX DENOTING THE TIME STEP INSIDE THE SERIES (ASSOCIATED

C WITH THANOW).

C USED INTERNALLY

C I - INDEX DENOTING THE RADIAL NODE (I=O,IMX).

C USED INTERNALLY

C PI - THE CONSTANT PI (3.141 ...)

C USED INTERNALLY
C DECLARE VARIABLES:

IMPLICIT CHARACTER(A-Z)

INTEGER NUMT,IMX

REAL BIOT,DELT,GENRAT

REAL SUM(1:100),THAPRE(1:100),THANOW(1:100)

REAL PI,CONS,CONFD

REAL B,XS,XFD,QSQFD
REAL VISDIFF.PERDIFF

INTEGER T,I,J

C

C GET PARAMETERS.

C
PI = 4.*ATAN(1.)
CONS = 2./(BIOT*SQRT(DELT*PI)*((FLOAT(IMX) + .5)**2))

CONFD z l./((FLOAT(IMX) + .5)**2)

C
C
C PRINT HEADER TO "G2OUT" (UNIT 2).
C

WRITE(2,50)
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C GET RESULTS FOR EACH TIME T.

C
DO 500 T - 1,NUNT

C
REWIND(UNIT=I0)

C
C /*READ VALUES AT TIME ZERO.*/

C
READ(10,*)

DO 600 I = O,IMX
READ(10,25) THAPRE{I)

600 CONTINUE
C
C /*GET SUM(I) FROM J=I,T-1 FOR ALL I*/
C

DO 700 I = O,IMX
SUMCI) = 0.

700 CONTINUE

DO 800 J = 1,T-1
B = SQRT(FLOAT(T-J)) + SQRT(FLOAT(T-J+I))

READ(10,*)
DO 850 I = 0,IMX

READ(10,25) THANOW(I)
SUM(I) = SUM(I) + (THANOW(I) - THAPRE(I))/B

THAPRE(1) = THANOW(I)

850 CONTINUE

800 CONTINUE
C
C /*GET FINAL VALUE OF SUM(I) FOR EACH I (INCLUDES TERM FOR*/

C /* J=T). ALSO, GET FINAL VALUES FOR QS AND QFD. *1
C

Q= 0.

QFD = 0.
READ(10,*)

DO 900 I = OIMX

READ(10,25) THANOW(I)
SUM(I) = SUM(I) + (THANOW(I) - THAPRE(1))

IF (I .EQ. 0) THEN

XS = .25*SUM(I)
XFD = .25*(1. - THANOW(I))

ELSE

XS = 2.*FLOAT(I)*SUM(I)

XFD = 2.*FLOAT(I)*(I. - THANOW(I))
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END IF0QS *QS +*X
QFD QFD + XFD

900 CONTINUE
QS QS * CONS
QFD aQFD *CONFD

C
C /*COMPARE QS AND QFD AND PRINT RESULTS TO "G2OUT" (UNIT 2)*/
C /*AND "PTDIFF" (UNIT 11)
C

IF ( ABS(QFD) .GT. 1E-15 ) THEN
VISDIFF a M(S - QFD)*100.)/(l. + GENRAT)
PERDIFF = ((QS - QFD)*100.)'/ABS(QFD)
WRITE(2,60) DELT*FLOAT(T) ,QS,QFD,VISDIFF,PERDIFF
WRITE(li ,80) DELT*FLOAT(T) ,VISDIFF
WRITE(12,80) DELT*FLOAT(T) IPERDIFF
WRITE(13,80) DELT*FLOAT(T) ,QS
WRITE(14,80) DELT*FLOAT(T) ,QFD

ELSE
VISDIFF = ((QS - QFD)*100.)/(1. + GENRAT)
WRITE(2,70) DELT*FLOAT(T) ,QS,QFD,VISDIFF
WRITE(li .80) DELT*FLOAT(T) ,VISDIFF
WRITE(12,85) DELT*FLOAT(T)
WRI'rE(13,80) BELT*FLOAT(T) ,qS
WRITEC14,80) DELT*FLOAT(T) ,QFD

ENDI F
C
500 CONTINUE
C
C -------------------------------------------------------
C FORMAT STATEMENTS.

25 FORMAT(iOX,E17.10)
50 FORMAT( NON-DIM. TINE' ,T21,'HEAT TRANSFER' .T41, 'HEAT TRANSFER'

& '(AFTER, DISTURBANCE)' ,T21, '(SERIES SOLUTION)' ,T41,
& '(FINITE DIFF SOLU) ',T61, 'VISUAL DIFFERENCE' ,T81,
& 'PERCENT DIFFERENCE')

60 FORMAT(FIO.7,IOX,4(El7.i0,3X),'%')
70 FORMAT(F1O.7,IOX,3(E17.iO,3X),' NOT COMPARED')
80 FORMAT(F10.7,5XE17.10)
85 FORMAT(FlO.7,SX,' NOT COMPARED')
C

RETURN
END
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